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ABSTRACT

MATHEMATICAL iiODEI.ING OF NEAR COASTAL CIRCULATION

by

JOHN D. WANG

and

JERONE J . CONNOR

Hydrodynamic circulation in coastal waters is formulated in terms
of mathematical models. A systematic discussion of the derivation of a
set of governing equations, expressing conservation of mass and momentum
is presented. A simplification is introduced by integrating all varia-
bles and equations over the total water. depth. The derivation of the
vertically integrated formulation for one and two layered situations is
discussed along with the underlying assumptions and closure problems.
The treatment of boundaries and boundary conditions is given particular
attention. By analogy to the mechanics of a particle it is postulated
that the admissible boundary conditions must either be in terms of
forces or discharges.

The solution of the formulated problem is achieved by using numeri-
cal techniques. For the spatial discretization the finite element method
is chosen because of its larger flexibility in grid layout and better
treatment' of boundary conditions. A detailed discussion is given of the
transformation of the original equations to the mathematically better
based weak form on which the finite element method is applied. All steps
of this procedure are systematica]ly motivated and it is therefore readily
extended to other kinds of problems. The weak form is not dependent on
the existence of a vari.ational statement; but it. is derived in a manner
somewhat similar to the method of weighted residuals. The transformed
fini.te element equations consist of a system of ordinary non-linear
differential equations in time. The structure of the linear homogeneous
part of these equations is shown to have a very attractive symmetric or
skewsymmetric form independent of element type and grid configuration.

Several different time integration schemes are considered and the
special structure of the finite element equations is used to determine
their stability properties. The split time technique which uses the
variables, discharges and depths, at alternating time steps is thus
theoretical]y found unconditionally stable for the pure initial value
problem. In practice, with prescribed boundary conditions and forcing,
the scheme is apparently only conditionally stable. It is, however,
the more efficient of the different methods examined, reqiriring least
storage and computational effort. Its accuracy is probably also ade-
quate for most problems. In cases where high accuracy is desired the
fourth order Runge-Kutta method is suggested, although this requires
six to eight times as much work as the split time scheme for the same



integration intervaI. There is need for more basic research in this
area of time integrations of finit'e element equations.

The one layer model is verified against several known analytical
solutions of long wave problems and is subsequently applied to determine
the typical patterns of Massachusetts Bay, Narragansett Bay and the New
Jersey coast. Verification against real field data of currents is very
difficult, primarily because information about the correct boundary
conditions usually does not exist; but also because reliable current
measurements for the coastal environment are extremely difficult to
obtain.

The two layer model is still in large part a conceptual model, since
many of the processes, such as interfacial shear and mixing, cannot yet
be quantified with any confidence. However, as a first estimate of
current patterns for layered flow the model is very useful. The formu-
lation and numerical solution techniques follow closely those already
discussed for the one layer model. Again, comparisons with known analy-
tical solutions are carried out. Verification against a laboratory
experiment and an application to a rectangular approximation of Massa-
chusetts Bay show the importance of being able to use a layered descrip-
tion. The model is very sensitive to the prescribed boundary conditions
~hich further enhances the need for a field monitoring program coinci-
dent with its application.

The one layer circulation model has successfully been combined with
a compatible dispersi.on model to describe the spreading of conservative
or nonconservative suspended or dissolved matter.
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CHAPTER 1

INTRODUCTION

Construction and operation of facilities interacting with

coastal waters can change the natural physical, chemical, and biological

processes. As a first step towards understanding how and why these

changes occur, methods of analyzing the circulation patterns are needed.

Estimates of how the water mass moves and where dissolved or suspended

matter is transported are basic requirements for answering questions

pertaining to many of those processes. They are essential for managing

this natural resource in a technologically sound manner.

Based on the vertically integrated shallo~ water flow for-

mulation, a finite element numerical model for the description/predic-

tion of circulation patterns and surface elevation changes is developed

in following chapters.

Two of the major natural causes of motion are the wind and

the astronomical tides, which are easily observable. Less conspicuous

and more difficult to account for is the forcing mechanism due to den-

sity differences within the medium. Density variations are consequences

of heat exchange processes or dissolution of chemical compounds such as

salt.

The effect of wind is explicitly included in the formulation,

and the tide, which i.s considered as a long wave, is accounted for by

the prescribed boundary conditions. Lateral density variations are

possible, but their distribution must be specified. An explicit deter-

mination would require solving the conservation of energy and salt bal-
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ance equations simultaneously with the momentum and continuity equa-

tions, which adds another degree of complexity to the problem.

The model lends itself also to studying flow generated by

natural or man made streamflows and can be used for initial investiga-

tions of far field circulation induced by a once through cooling water

systems

In a recent report [7Q], an assessment of the state of the

art in estuarine modeling is presented. The vertically averaged equa-

tions presented by Pritchard in [70[ are quite similar to the equa-

tions employed here, though the choice of variables is different. Also,

we employ the finite element method to obtain numerical solutions.

A review of previous mathematical modeling efforts is presented in

Chapter 2.

The tractability of physical modeling is also discussed in

[70[. These models are generally expensive, time consuming undertakings.

Frequently, physical dimensions necessitate distortion in the model,

making exact dynamic similitude impossible. Although physical models

are very useful when properly verified, their predictive capabilities

are sometimes questionable, especially when physical changes in geo-

metry occur.

The vertically integrated formulation  shallow water! was

derived around 1960. It is an attempt at simplifying a very complex

problem by eliminating dependence on the vertical coordinate. The

term "shallow water" is used to denote a water mass in which there

is little variation of the variables over the depth. Since their

introduction, the equations have been utilized to investigate circula-



tion problems. However, further simplifications and approximations are

often introduced, unfortunately sometimes inconsistently. Similarly,

little work has been done to establish the necessary and sufficient

boundary conditions for a well-posed problem. Since bath physical and

numerical models can handle anly a bounded domain, the problems must

be farmulated as mixed initial-boundary value problems. Just recently

has there been any concern about existence and uniqueness of solutions

to problems thus formulated, and these issues are still unresolved for

shallow water circulation. In Chapters 3 and 4, the derivation of the

vertically integrated flow equations is reviewed. The underlying assump-

tions, basis for constitutive equations, and boundary conditions are

discussed in detail.

The numerical models have traditionally employed the finite

difference method to solve the governing differential equations. In

essence, this method satisfies the governing equations by replacing

derivatives by difference approximations. For a problem in two spatial

dimensions this implies a discretization with a constant size, square

grid mesh. Although grids of other shapes are possible, they are

usually too inefficient to use. In recent years, a more powerful method,

the finite element technique, has emerged. In this method, the func-

tion satisfying the gaverning equations and boundary conditions is

approximated by piecewise palynomials. Very flexible grid discretiza-

tion is an essential virtue of this method. Its other merits and

problems are discussed in Chapters 5 and 6.

Verification of the model is important. It assures that

the formulation is consistent, the solution procedure is correct, and

20



also that the assumptions made are in fact reasonable. Model results

must be compared with known solutions or actual field data. Verification

against real data is the most difficult task. Synoptic data of sea sur-

face level and especially currents are essential far proper verification,

and specification of boundary conditions. Unfortunately, a sound and

reliable current meter has not yet been perfected. The known propeller

or rotor type meters take samples averaged aver rather long time inter-

vals  -5 sec! and are therefore influenced by oscillatory wave cur-

rents [78]. With the development of the more sophisticated electro-

magnetic meters with much faster response time and sturdier construction,

these problems will hopefully be overcome soon. Some comparisons of

actual data from Massachusetts Bay with model results are presented in

Chapter 8.

As mentianed earlier, boundary conditions have been treated

rather superficially with the result that sufficient data in most cases

do not exist to prescribe these conditions accurately. By doing sen-

sitivity studies  Chapter 8! we have found that model results are strong-

ly dependent an the specified boundary conditions. There is therefore

a need to establish systematic field monitoring programs providing syn-

optic real time data for coastal waters. The models can be used ad-

vantageously ta identify the best places ta install gauges and otherwise

support the field programs.

In addition to the natural wind and tidal dominated flow

situations, a growing interest is directed towards the circulation in-

duced by large industrial or power generating facilities. There are

many technical and mathematical problems associated with modeling such

21



cases. Questions of whether mass is conserved or how to apply the loads

have received little attention. In Chapter 8, each of the different

loading situations has been considered and solution strategies are

outlined.

The one layer vertically integrated model is not applicable

when the density varies significantly over the depth causing the flow

to be stratified. One cannot neglect the z dependence and a truly

three-dimensional formulation is required. Buoyancy effects are impor-

tant and a complete solution must, in addition to solving the three-

dimensional equations of motion, carry out an energy and salt balance

to determine the local density. A model of this type is still very

much a "dream". The existing soft-and hardware may be sufficient to

carry out the solution so it is not a computational problem~although

this in itself is formidable. The overwhelming obstacle lies in the

formulation. There is at present no coherent way of handling surface

and internal waves, real time wind and pressure distributions, turbulent

momentum exchange or boundary conditions. With the increased accuracy

that is desired, all these factors must be known better; but they

cannot be quantified accurately yet. Our belief is, that a reliable

predictive three-dimensional model is still a long way off in the

future. In fact, there may be more promise in resorting to stochastic

rather than deterministic modeling since both flow field and loadings

display a random character.

A few attempts at creating s framework for three-dimensional

descriptive models have been done ss mentioned in Chapter 9. There is

however no discussion of the important factors we noted above, or how
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such models possibly could be calibrated and verified.

When the density structure shows a layering of the water

mass, a compromise between three-dimensional ar one-layer vertically

averaged models seems reasonable. Pigure l-l shows a typical vertical

density profile for Massachusetts Bay in summer time. This special

layered stratification is entirely due to heat exchange processes and

is characteristic for many coastal areas. The warmer lighter surface

layer  epilimniai!is separated from the colder, heavier bottom layer

 hypolimaion! by a thin transition zone around the thermocline  meta-

limnion!. Mixing between epi- and hypolimnion is radically reduced

because of the density differences and as s first approximation it may

be assumed that top and bottom layers  neglecting the thin metalimnion!

only are coupled through the pressure distribution. In this case, a

two-layered model will reflect the real physical world better than a

simple vertically averaged one layer model and hopefully it will give

as accurate results as a three-dimensional model for much less work.

In Chapter 9, the statue in layered models is briefly

reviewed and Chapter 10 describes the development of a two-layered,

vertically averaged, transient, descriptive, mathematical model.
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0 5 10 15 C

Typical summer temperature profile in
Nassachusetts Hay. Density profile has
similar shape, since the salinity structure
is fairly homogeneous.
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is linear and boundary conditions are specified on the discharges. For

streamflow boundaries the natural condition is to prescribe the dis-

charge and prescribing the velocity can lead to inconsistencies, be-

cause the surface must be left free to move. The bulk of previous work

however, has used the vertically average approach> so for discussion

purposes equations �.1! - �.3! are most suitable. For completeness

it is finally noted that Pritchard chose to leave out the controversial

eddy viscous terms in �.1! and �.2!.

Circulation models were initiated in the field of mathematical

weather prediction. Same of the earlier efforts in hydrodynamics

are the works of Hansen f27] and Nelander [76].

Although both were looking at shallow water circulation and employ-

ed vertically averaged equations, two widely different approaches have

evolved from their work.

Hansen [27] outlined the vertically averaged formulation almost as

we know it today. In fact recent models exactly copy his wozk j35].

He did not include variations in surface atmospheric pressure or den-

sity; but did include a horizontal virtual viscosity term with constant

eddy viscosity coefficient in the momentum equations. The velocity

components were assumed of the form

�.4! u = u� + u"!

�.S! v = v� + vr'!

where u, v are the ensemble averaged velocity components as functions

of  x, y, z, t!; u, v are the vertical average values of u, v and uu",

vv" are the deviations over depth of u, v from u, v. The relation-

ships �.4! and �.5! were used to express the contributions from the
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convective accelerations to the virtual viscosity terms. These equa-

tions have the disadvantage that if u or v is zero the corresponding

vertical deviation must be zero also which is not necessarily true in

nature. Finally the viscosity coefficients due to turbulence and ver-

tical shear were assumed identical which is without physical basis,

The formulated problem was solved by the finite difference method,

FDM, using the variables q, u and v on a staggered grid in space and

time. This particular scheme shown in figure 2-1 with later modifica-

tions has proven itself very successful in solving tidal flow-problems.

In a recent book by Roache [61] an introduction to the FDM is

given for fluid dynamics problems and the importance of satisfying the

conservation laws in the large is reviewed. The requirements of stabil-

ity and consistency are also discussed. A more rigorous treatment of

these concepts is given in [60].

One advantage of the staggered grid is that it allows the use of

central differences in space and time, which is desirable for accuracy

and numerical stability while keeping the number of variables low and

partly uncoupled. Figure 2-1 shows there are problems with represent-

ing the physical boundaries properly and special treatment is necessary

to avoid errors and instability. This aspect was not discussed in [27i

and has remained a major problem in later modeling efforts. The usual

procedures require assumptions of surface slope or direction of velo-

city in addition to prescribing the surface elevation or the velocity.

In his original report [3g] Leendertse using the same equations as

Hansen but without eddy viscosity terms very briefly discusses the prob-

lems encountered at the boundaries. However he devoted the main part of
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his efforts to the numerical stability and accuracy aspects, showing

the importance of using centered differences. The treatment of the

nonlinear terms as usual causes severe problems. Time centered dif-

ferences cannot be used for the convective terms in the equations of

motion if a tridiagonal coefficient matrix must be preserved. Similar-

ly only the linearixed equations are solved along the boundaries be-

cause the use of values extrapolated from the interior as would be

required leads to instabilities. The nonlinear terms in the continuity

equations are handled by an iteration procedure. The grid employed

must basically consist of a lattice of squares with the configuration

shown in figure 2- 2.

4 I ~ I I o I ~ I ~

+ � + � + + � + � +

4 I s I ~ I ~ I ~ I ~ I 4 I o I o,

Water level, ocean boundary u velocity

I v velocity+ Water level

4 Depth

Figure 2-2. Space staggered grid employed by Leendertse and
others.

Although computationally very attractive this layout, which also

staggers the velocity components  compare with figure 2-1! still
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suffers from difficulties with representing an arbitrary boundary pro-

perly. It has been argued that the staggering of variables makes it

harder to comprehend the results, however, the problem can easily be

solved by numerical interpolation, though accuracy of course is un-

changed. Several applications are shown and the FORTRAN program is

listed in the report. Other investigators frequently use this model

or the same scheme; a few examples from the literature are found in

[60, 75].

Heaps [28] looked at wind surges in the North Sea using the lin-

earized and integrated dynamical equations in spherical coordinates.

His numerical scheme uses a third type of staggered grid in space with

velocities at the same points as shown in figure 2-3 . Care was taken

to center the differences in space and an explicit time integration

scheme was used. Consistent treatment of boundary conditions require

considering 22 different types of grid-point configurations. Since

the Linearized equations are used the "influence" method or simple

superposition principles can be used. It is however, not certain that

non-linear terms can be neglected, especially ignoring second order

effects of the surface elevation change seems too crude for storm surge

predictions. For shallower areas a linear relationship for bottom

friction with constant coefficient would probably not reflect the

physical reality very well either.

Reid and Bodine ['>o] also developed a storm surge model based on

the vertically integrated equations without the convective accelera-

tion terms. The space staggered grid of Leendertse was used for the

finite difference solution with an explicit time integration method.
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The flooding of flatlands was incorporated and a radiation tyPe p n

ocean boundary condition was introduced of the form

q cg

where q is the discharge per unit width normal to the boundary, c isn

a coefficient and q is the surface displacement. The ob]ective was to

impose less restriction on the system and to avoid the reflect:ion

which normally occurs when the flow or surface elevation is fixed. The

condit:ion �.6! is however equivalent to an elastic spring support for

a solid and is physically unreasonable for a fluid, since q would have
n

to change sign wit:h rl, whereas a dependence on the gradient of rl would

be more realistic, although not correct as coriolis, bottom and surface

stresses also play a role.

Abbott et. al. [ 1 ] developed their models along the same lines as

Leendertse with the space and time staggered grid. However a special

implicit time integration method is used which has better conservation

properties and thus seems to be more stable. A special feature that

allows the model user to change the grid size, but not orientation, has

also been developed. The model package includes graphical display cap-

abilities, but the program listings are not available to the public.

Sobey [ f$] reports on a comparison study of the performance of

the models discussed in [ t, 2H, 38, i9J. To make the investigation

viable the governing equations were linearized and coriolis and friction-

al terms are neg1ected. Thus the formulation reduce to the simple lin-

ear long wave equations



� + g � 03v Bq
at ay

�.8!

�.9! � +h  � + � ! 0Bn Bu Bv

at Bx ay

tions of known astronomical periods from data. Prediction is only
33

The existence and treatment of boundary conditions are totally ignored.

Fourier series solutions for both the above set of differential equa-

tions and each of the 4 listed finite difference analogues were found.

The wave frequency and amplitude characteristics were computed using

the concept of the propagation factor [38 ] to describe the ratio of the

numerical and analytical solutions. The results show that the simple

explicit scheme of Reid and Bodine performed best as long as it remained

stable. Their scheme shows less modulation of wave amplitude and phase

than the others, however, its application is more restricted by numeri-

cal stability.

However, the performance of the implicit models [1 ] and [38]

was also satisfactory and considering that larger time steps can

be used these models seem more attractive.

For the great lakes Simons [64 ] implemented a finite difference

model based on the vertically integrated equations with eddy viscosity

using two space and time staggered grids simultaneously to avoid pro-

blems with the convective terms. Several variations on treatment of

bottom friction and convective terms were tried. Since high resolu-

tion is desired and the time integration scheme is explicit consider-

able computation time is necessary.

Dronkers P.8 j reviews the harmonic method for tidal prediction.

This technique relies on time series analysis to derive harmonic func-



possible when the geometry remains the same and only yields the tidal

components. For the coasts of the U.S. such predictions are made

available through the tide tables.

An outline of the method of characteristics applied to the one-

dimensional shallow water equation is given by Liggett and Woolhiser

[43]. The advantage of this approach is that the original system of

partial differential equations can be written as ordinary differential

equations on the characteristics.

However, these are in general curved and time dependent thus

making a solution more difficult to interpret. Although the same

methodology can be extended to two-dimensional flow there seem to be

no incentive for such work as the curvature of the characteristics

makes it a difficult book-keeping and interpolation process to obtain

a useful solution. Compared with well established finite difference

methods, there does not seem to be any advantage in pursuing the method

of characteri,sties for two-dimensional flow.

The approach initiated by Welander [7" ] based on the earlier work

of Ekman is specifically designed for wind driven currents. The method is

noteworthy because the dependence on the vertical x-coordinate is deter-

mined analytically. Because one of the assumptions is that the surface

is fixed it is often called the "rigid lid" method and is primarily

used to predict wind circulation in lakes ["4, 4.I, 42]. The other

main assumptions are that horizontal momentum diffusion, non-linear

terms and density stratification are neglected. The vertical eddy vis-

cosity is constant throughout~ and all velocities vanish on the bottom

 no-slip!. The solution proceeds by expressing the z dependence as an
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infinite fourier cosine series [/I1, 76]. Next the vertically integrated

equations are solved by introducing a stream function which identical-

ly satisfies the approximate continuity equation. The pressure is

eliminated from the momentum equations and one partial differential

equation in the stream function results. This equation with the proper

boundary conditions is solved using finite differences and the vertical-

ly averaged quantities can be derived. From these the velocity distri-

bution over depth and vertical velocity can be found. By cross differ-

entiating the momentum equations and adding, it is possible to obtain

a poisson type equation for the pressure from which the surface dis-

placement is inferred. Aside from the already mentioned assumptions

which are somewhat restrictive there are difficulties in establishing

boundary conditions, especially for the pressure. Also the stream

function solution has to be accurate enough so that the velocities can

be obtained by numerical differentiation. This can be very costly for

larger problems.

Discrete elements

In the last few years, a method with properties of both finite

difference and element techniques has evolved, Instead of starting

with the differential equations for the infinitesimal element all bal-

ances are performed directly on the computational element. Such a

discrete element can have an arbitrary shape. However, prisms with

square, rectangular or triangular cross sections are usually used.

The variation of variables in an element is characterized by discrete

nodal values. These nodes are usually located at the center of element

sides and at the centroid, and only vertical variations are considered
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on an element side. Correctly formulated the conservation principles

are satisfied and in theory an arbitrary grid can be used, In order

to insure convergence the discrete equations must approximate the dif-

ferential equations as the elements are made smaller. Ta show this

by taking the limit of the discrete equations as the control volume goes

to zero is often difficult for odd shaped elements. Some examples of

applications of this method are found in [I9, 63]. One disadvantage

of this method is that a local grid refinement at x , y basically re-
o 0

quire all elements along y ~ x and x y to have same Ax and Ay as
0 o

sketched on figure 2-4. It is however quite possible that an interpo-

lation technique or trapezoidally shaped elements could be developed to

circumvent this problem. The use of such schemes has so far not been

documented in the literature.

Finally, the history and development of the finite element method,

FEM, is briefly reviewed. As an engineering tool, it is relatively

new and was first used in 1956 to analyse complex aeronautical struc-

tures. Until late 1960ies it was mainly applied to problems in solid

and structural mechanics. Zienkiewicz has collected a number of such

applications along with some more recent fluid flow problems [ 8I.].

A survey of the finite element method in continuum mechanics with a

discussion of the Galerkin expression for a Newtonian fluid is given

by Connor [I> ].

For a long time the success of the FEM relied upon whether a vari-

ational statement of the problem existed. This approach is for example

followed by Chan et al [ 6 ] to solve some free surface ideal fluid flow

problems. The functional was solved for by using the Galerkin method
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which may be interpreted as a piece-wise Rayleigh-Ritz technique. In

the paper by Finlayson and Scriven [20] it was shown how Galerkin's

method could be derived from the method of weighted residuals and thus

the need for a variational principle was circumvented. Their approach

is to define the residual as

�.10!

for the di.fferential equation

�.3.1! Lu ~ fo

where l is a differential operator; u is the exact solution, Q is an

approximate solution and f is the data or inhomogeneous term.

Applying a weighting function w to the residual and summing over

the entire domain Q leads to

�.12! WR ~ Rwdm ~  LQ - Qwde

Requiring the summed weighted residual, WR, to vanish yields the inte-

gral equation on which a finite element solution is based.

Some confusion exists with regard to the terminology of the Galer-

kin statement. Grotkop [ 261 thus interprets it as an orthogonalization

of the residual to the weighting function. The difference in wording

is unimportant and as we show in chapter 4 it is also unnecessary if

a few essentials of functional calculus are introduced. Although

there is general agreement that the weighting and expansion functions

should have the same form  Galerkin principle!, obtaining a well-posed

formulation for a problem has been somewhat a matter of "feeling" and

experience of the solver. This obviously deterred many less experienc-

ed people from applying it. However, a straight forward and rigorous

mathematical procedure has been developed which enables one to transform
38



MX~P�.13!

where the tilde denotes a matrix quantity, leads to the recurrence

relationship [69]:

- MX + At  � F +~»!1 2

3 n 3 n+1

whereas the trapezoidal rule is written

MX = MX + -ht[F + F !1

n+1 n 2 n a+1�. 15!

1
The latter is centered around time n + � and ia therefore more

2
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any problem from its differential form to an integral form  called the

weak form! which is well suited for the FEM. This procedure is explain-

ed and demonstrated in chapter 4.

Shallow water circulation has attracted only a few finite element

modelers. Gallagher et al. [22] analyzed steady wind driven circula-

tion for shallow lakes using the rigid lid equations. Full advantage

of the freedom of varying the grid was not taken in the examples given,

however, the possibility of using existing general purpose finite ele-

ment programs was emphasized.

Taylor and Davis [69] solved the vertically averaged equations

for constant density and neglecting eddy viscosity terms. The plane

was discretized with cubic isoparametric elements and for the time

integration, a fourth order predictor-corrector method, the trape-

zoidal rule, and finite elements in time were compared. Grotkop [26]

treated the same problem using the linear finite element in space and

time. This particular scheme is easily shown to be less accurate

than the trapezoidal rule although requiring the same computational

effort. Applying the linear finite element in time to the equations



attractive than the skewed farm �,14! . In I'6g] a cubic expansion in

time was also tested, and based on trial runs for a wave propagating in

a channel it was found that the trapezoidal rule is more efficient. Al-

though both the predictor corrector and the cubic finite element give

more accurate results with the same number of computational elements,

the increased amount of work discourages their use for larger problems.

Even the trapezoidal rule is quite cumbersome to use since the result-

ing matrices are unsymmetric.

The most comprehensive report ta date on finite element models

for fluid flow is prepared by Norton et al. [49]. Both vertically aver-

aged and two dimensional flow in the vertical plane are considered. The

latter formulation allows for variable width in a cross section and

corresponds to the laterally integrated equations. Although the trape-

zoidal rule  linear acceleration! is suggested for time integration

all applications are for steady state cases. To handle the nonlinear

terms a Newton-Raphson iteration method is used. Compared to succes-

sive approximation methods this scheme has hetter convergence proper-

ties; but each iteration requires a considerable amount of computation

and is therefore less attractive for time varying problems. The

Galerkin principle is employed to transform the problem into a form

suitable for applying the finite element methods. The approximation

of curved land boundaries with triangular elements causes conceptual

difficulties when velocity slip is allowed. At the necessary break

points of the model boundary the free tangential velocity component

gives rise to flaw across the adjoining segments. Thus it is claimed

that mass cannot be conserved unless both velocity components are
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prescribed zero at such break paints of the model land boundary. Nor-

ton et al. hence advocate that as few break points as possible be intro-

duced and that both velocity components must vanish at these points. A

significant decrease in the flexibility of the finite element grid

follows and an obvious consequence of this strategy is that large

gradients will persist in the vicinity of break points, which makes it

necessary to use a fairly fine grid there. This however easily leads

to highly distorted elements as displayed in the grids shown in f49],

i.e. very Iong and narrow triangles which are intrinsically less accur-

ate are employed. The apparent conflict reported above is rather in-

geniously resolved by proper definition of a normal direction at the

break points as we show in chapter 5 thus allowing for a tangential

flow component and eliminating the need to reduce the number of break-

points.

To conclude this overview we suggest that certain objectives can

be identified as necessary for developing a general purpose vertically

integrated circulation model for shallow water. These objectives are

to present the most complete set of governing equations at the present

time, using the more natural vertically integrated  instead of aver-

aged! quantities as variables and to take a closer look at the tur-

bulent and dispersive momentum transfers.

The latest developments in numerical approximation techniques

furthermore indicate that the finite element method is the most

sophisticated numerical tool available. The possibility of using ar-

bitrary grid schematizations and the better handling of boundaries

make this technique particularly attractive for our purpose. We



shall use the finite element method to solve the general problem of

coastal circulation as it will be formulated and also finally discuss

time integration schemes and other problems associated with obtaining

a solution for a real situation.



CHAPTER 3

3. 1 FORhSLATION

Beginning with the basic principles of conservation of mass and of

force equilibrium, Newton's second law!, a formal mathematical model is

developed for transient vertically integrated flow in the plane. The

approach is somewhat similar to the works by Hansen [2!], Reid and

Bodine [39], Leendertse [38], Norton et. al. [49] and Pritchard [7O].

We attempt to include all important steps of the development and to

account for assumptions and their basis as much as possible. Where

numerical parameters are needed in the constitutive equations, numbers

or relationships based on experience are indicated. The model is thus

intended to be truly predictive with the singular reservation that boun-

dary conditions must be prescribed. The necessary boundary conditions

for a well posed problem is also discussed.

3. 2 THREE-DIMENS IONAL FLOW.

The mathematical formulation of the conservation of mass and

momentum principles for three-dimensional flow has previously been derived

in an eulerian framework using a cartesian x-y-z coordinate system,  see

f.ex. [ 15]!. The operation consists of balancing mass fluxes or forces

for a small cube dx-dy-dz,  see Figure 3-l!, and then taking the theo-

retical limit as the volume of the cube approaches zero. The result is

�.2-1! V, +  Vu!. +  Ov!. +  m!,t x 'z
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written for the x- and y-directions:

 pu! +  puz! +  puv! +  puw! - pfv
~ t ~ x Jz

-p+y+y+T+mpx '~,* 'yxy 'e z px

�.2. 2!

 pv! +  puv! +  pv ! +  pvw! + pfu~ t Jx Jz

'«y.x

�. 2. 3!

A rotating right handed coordinate system fixed on the earth

with the z-axis vertical upwards is chosen. The equations�.2.1!

�.2.3! apply to the expected values of velocities and pressures which

are considered to be stochastic processes. The T's are therefore due to

molecular viscosity and turbulent momentum transfer [15, 62]:

'J p < u i u ~ > iJ] ~ lJ2J3�.2.4!

where < > signifies expected value of the argument, y is the

viscous stress and u' is the turbulent velocity fluctuation in the i
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which states that the local rate of change of mass per volumeJadded to the

net flux out>is equal to the rate of adding mass per volume, e. If there

are no internal sources  henceforth we shall define a sink ae a negative

source and therefore only need to talk about sources!, e is zero. p is

the density; u,v,w are the velocity components in x,y,z directions and

partial differentiation is written as a subscript comma followed by the

independent variable.Equation �.2.1! expresses a fundamental principle

for any continuous one phase fluid.

The equilibrium of forces acting on the control volume is



direction. For convenience, here and in the following, frequent use of ten-

sor notation will be made, the 1,2,3 directions being equivalent to

x,y,z. The left hand sides of �.2.2!and �.2.3! represent the inertial

forces on a unit volume and the right hand sides are the surface forces

acting on the same volume plus internal sources of momentum m , m . Inx' y'

arriving at �.2.2! and �.2.3! is has been assumed that the vert;ical

velocity w is small so that only pfu and pfv are retained from

the fictitious coriolis force. f is the coriolis parameter 2 a!
earth

sin $, where z is the phase velocity of the earth's rotation and
earth

is the latitude  N! of the location.

Figure 3-1. Infinitesimal control volume.
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The isatropic normal stress in fluids is usually compressive and there-

fore denoted p for pressure  positive!. The deviatoric stresses

i,j = 1,2,3 are defined as usual, the first index denoting the >ormal

direction of the face on which the stress acts and the second, the posi-

tive direction of the stress.

An order of magnitude comparison of the inertial terms in

�.2.2! and �.2.3! is illustrative. Let t, R, h, u. and w be re-

presentative time, horizontal and vertical length and velocity scales.

Scaling �.2.2! then yields

42 44
u 4 4

wfuaf w
h

where f w is the so far ignored component of the coriolis force and

f is equal to approximately 10 sec at 40 latitude. In order to

drop f w and keep the remaining terms we must have

4 U
U !! W

4
w ug !!h t � � .. � � fa

u g,

 pw! +  puw! +  pvw! +  pw ! + 2' v � 2' u
,t ~x ~ Z x y

�.2.S!

zxzgxyz,yzz,z

where la and u are the x and y components of the earth's rotation.
x
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4
For a typical coastal area u 0�.5m/sec!, w 0�.05m/sec! f 0�0 m!,

h = 0�00m! giving a corresponding time scale t = 0�.10 sec! - 0�.6 hr!,

indeed in agreement with the above scaling relations.

Vertical equilibrium requires



�.2.6! p ss � Pg
$ Z

Along the boundaries, special conditions apply. Thus the fact that the free

surface is a material interface is expressed as the kinematical condition

D 3g 3+ 8Q�  q-g! ~+u~+ vg- w ~ 0
Dt x

z~rI ' z~g

�.2. 7!

where evaporation snd rainfall are neglected. q TI x,y,t! is the sur-

face elevation, Figure 3-2, and � is the total or particle derivative.
D

At the bottom z = -h x,y!, which is assumed fixed and impermeable, the

similar condition is

>h dh
Lum � + v~+ w] ~ 0

dx ~y z -h
�  zW!
D

Dt
z -h

�.2.8!

For lateral boundaries ~ which are assumed vertical, see Figure 3-3! the

flow must be continuous, implying

�. 2. 9! i ~ 1,2

i!k i j ~ 0
�. 2.10!

i,!,k ~ 1,2,3

where 2 i k is the pe~tation tensor, g123 - 312 - 2231 - 1
-1 and all other elements are zero.
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Scaling of this equation leaves only the pressure, gravity and normal stress

terms as significant. Again z is related to molecular viscosity and
zz

the vertical velocity fluctuations, hence it can be neglected in comparison

with pg and we finally obtain the hydrostatic pressure condition.



Fi.gure. 3-2. DefLniti.on sketch.





�.2.11!  T + p q ! prI � T n � ~ rl
x IX ~ x xx ~x yx Iy zx

z rl

�.2.12!  T +p q ! pq � t q - ~ qs s

�.2.13! -p +~ q +z q -p -~ rl � x q +vs s S

x ,x y ,y xz ,x yz ,y zz
z q

and similar1y for the bottom  z -h x,y!!.

�2.14! z -p h - p- T ! h +T h +tb b

x yx XX ~x yx ~y zx

b b
-p h ~ -T h -  p-r !h +t

x
�. 2 15!

-p - T h � z h ~ -p + T h + T h + y
b s s

x ,x y ,y xz gx yz gy zz
�. 2. ].6!

On lateral boundaries, continuity of the stresses is again required.

+�. 2. 17! [normal stress! 0

+�.2. 18! [tangential stress[ 0

In case the fluid is considered inviscid �.2.10!and �.2.18!
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n is a unit vector perpendicular to the boundary directed out of the

area of interest. + and � are points just outside and inside of the

boundary. Equations �.2.9!, �.2.10! express that normal and

tangential velocities gust outside and inside the boundary must be equal.

Dynamic equilibrium must also be satisfied on the boundaries,

see Figure 3-4. Pro!ecting the forces for a surface element on x,y and

z-directions result in



must be relaxed and only �.2.9! and �.2.17 ! enforced. Finally, for

a well defined problem, the initial flaw field Ui must be known.in

in
� ~ 2 ~ 19! u u i 1,2,3 x,y,z c 0 t =0

'i

For an arbitrary geometry, the problem as formulated is not

easily solved. Numerical solutions are stymied by excessive computer re-

quirements and lack of information on the proper boundary conditions

In coastal areas that are well mixed through the water column, a signifi-

cant simplification is achieved by eliminating the explicit dependence on

the vertical coordinate. This process is described in the following

section.

3. VERTICAL INTEGRATION

In shallow water bodies, the flow variation through the depth

is often less significant. In such cases, vertically integrated equations

and variables msy adequately describe the situation. This approach yields

estimates for the transport through any cross section, however, detailed

information on the velocity structure is lost. In the following, the

water density is assumed constant in the z direction, i.e. p ~ p x,y,t!.

This and the assumption of relatively small vertical velocities and accel-

erations are normally implied by the definition shallow.

The development af a boundary layer from an applied wind

stress on the surface is dependent on the magnitude of the vertical tur-

bulent momentum transfer. Several investigations have found the vertical

eddy viscosity falling in the range E wl � 200 cm /sec. If the time

scale of 1 hour is retained, a notion of the meaning of the expression



shallow in connection with wind driven circulation is obtained from the

expression

o
h I E t ~ 1-10m

W
�. 3. 1!

The use of vertically integrated quantities to predict dispersion of a

tracer in this situation is clearly less satisfactory because of the highly

non-uniform velocity profile, although the total transport still may be

well predicted. ln two and multi-layered models, some improvement on this

point can be expected. For tidal flow, the driving force which is the

hydrodynamic pressure, acts over the entire depth, and vertically integrated

values are expected to be representative for the local velocities also,

except close to the bottom. Finally, neutrally buoyant stream flows en-

tering or leaving the area are well suited for an integrated treatamnt

since those flows generally are well mixed. Again, in-or outflows with

a density difference are better simulated in multilayer models.

The governing equations are integrated over the total depth

to eliminate the z-dependence. Beginning with Equation �.2.1!, we for-

mally write

n
�. 3. 2! p dz + p  u! dz +  pv! dz +  pw! dz = edz

-h -h

Making use of Leibnitz's rule [29] we may change the order

of integration and differentiation to obtain

t an apdz � ~ + a pudz � pu iat x -h

r a  -h!pvdz � pv � + pv
-h

a

ax
� ~ 3 ~ 3!

a

at

+ pw � pw
-h

a
+

ay pq



Finally applying the kinematic conditions on the surface and bottom

results in

�. 3 ~ 4!  PH! +  Pq ! +  Pq ! - Pql
1

where we have introduced the integrated variables, total dept'h:

8 ~ dz ~ h+Tl
-h

�. 3.S!

discharges in x- and y"directions per unit width:

q = � udz
x

�.3.6!

q = vdz
-h

�. 3. 7!
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If we let q represent the net rate of volume addition per unit hori-I

zontal area, this result �.3.4! is generally valid for any type of flow,

including situations with permeable bottom and evaporation or precipitation

at the free surface. The primary objective for including q ia however

to make possible modeling of internal sources such as the discharge from

a diffuser pipe.

The integration of the momentum equations, �.2.2! � �.2.3!

proceeds analogously:



n n
� 3-8!  pu! dz +   pu ! +  puv! !. dz +  puw! dzt h,x -h

n

pfvdz + p dz �  T + T !dz-
-h ,x h xx,x yx,y zx,z dz

n pm dz
X

~ n Bn B an pu! dz �  pu! � + �  pu !dz �  pu !
Bt Bx x

+  pu! B-h B Bn B I'-h'4-a + �  puv! dz �  puv! � +  pgv!
By -h

+  puw! �  puw! � pfq + � pdz � pB Bn
n -h ~ -h x

B-h B n Bn a -h+p + Th ax Bx h xzd z xx Bx xx h Bx
n

a I' jn Bn a -h
T dz+T T  T ! +  T !By j yx yx Yy yx y zx zx

|zz a
x

B B ~ a B n
Bt�  pq ! + �  pu'! dz + �  puv! dz � pfa + � p dzBx ay Bx

a, a, s b saH bahpF' -~pF' � T + T � pm - p � � p � 0
vx xx ay yx x x x ax Bx

in which we have defined
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n
pF ' = v dz

XX XX
�. 3. 9!

�.3.10!
yx

�. 3. 11!

� ~ 3. 12! p x,y,t! p + hp x,y,t!

and assuming the instantaneous local deviation is small compared to the

mean

�. 3.13! Qp    p
0

Boussinesque's approximation [ 57] is introduced whereby the density in

all terms is replaced by the constant mean density p . This is a reason-
0

able simplification provided the real density is used in the pressure term

which now takes the form

p F p dz � � p g h~
0 p 2 0

�.3.14!

pghq+ � p gq + � gpgH +p H
1 1 s

0 2 0 2

With these definitions and approximations, the final form of the equili-

brium equation �.3.8! becomes
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For computational reasons it is more convenient to work with the

pressure in excess of hydrostatic pressure corresponding to the water level

at datum and rest.

The density may be written as a mean value plus a deviation



a a " a n
�  q ! + � u dz + � uv dz � fs + �  F - F '!
Bt x Bx By Bx p xx

�.3.15!

b
s

x

PO " '0

8
T

� � F +B «x
By yx

BH Bh ho ah� � gq � - gH � ~ 0
Bx Bx p Bx

0

By complete analogy, the force balance in y-direction gives

a . a B n�  s ! + � uv dz + � vzdz + fq
By

�.3.16!

s b

a- � F ' y  F F «!+~»
Bx xy By p yy p

0

8
aa2

p Qx
0

-~g~ � -S - 0ah ah
p By Bx

0

with the corresponding definitions:

pF ' = pP ' = y dzp yx = �'yx�. 3. 17!

�.3. 18!

�-3.19!

similar empirical expressions, Manning, Chezy, and Darcy-Weisbach equa-
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The number of unknowns still exceeds the number of equations for our

problem. To overcome this hurdle, the currently most successfully used

empirical relations for bottom and surface friction are reviewed in order

to establish a set of constitutive equations. Previous modeling has

shown that a quadratic,  in mean velocity!, bottom friction law in all cases

adequately represents the damping due to the shear at the bottom. Several



b
�. 3. 20!

~l
�32l! T C P a + e !

where

1 f Darcy-Weisbach

�.3.22! C
f

Chezy
C

n
2

g Manning

Values of Manning's n are only known for fully developed rough turbu-

lent flow, which fortunately is the normal case in coastal areas, as the

u H 1'10 7Reynolds number R > ~ 10 and the relative roughness
v 10

8� -" 0.01 - 0.1. For fixed roughness the friction factor C is there-
H t f

fore inversely proportional to H . Normal values of n range 0.025

� 0.040. The values of Cf for some n and depth values are given in

Table 3-1.

In other flow regimes, the use of a Moody diagram to find f is

the best approach. Choosing as an example C 0.005 and a velocity of

1 m/sec gives a shear stress of 5 N/m~ which is considered as a large

bottom friction.
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tions f15 ], were originally derived from measurements of steady flow in

channels or pipes; but have been modified for two-dimensional unsteady

circulation. The quoted relationships are the most widely used and relates

shear stress to discharge per unit width as follows:



Bot-

tom

nigh
ness

k [m]

40 50 10010 20 30

n

[sec
-Ys

Stones

0.07 0.025 0.0061 0.0049 0.0036 0.0028 0.0023 0.0020 0.0018 0.0017 0.001
Small

rocks

0.20 0.030 0.0088 0.0070 0.0052 0.0041 0.0033 0.0028 0.0026 0.0024 0.001
Dunes

0.50 0.0095 0.0070 0.0056 0.0044 0.0039 0.0035 0.0033 0.0020.035

1.10 0.040 0.0092 0.0073 0.0058 0.0051 0.0046 0.0043 0.003

ThBLE 3-1: Values of C
f

�.3.23!

where P is the air density,  -1.2 kg/m !
air and U 0 is the wind

speed at 10 m above the surface, then the wind drag coefficient C has
D

been found ta vary from approximately 0.001 and up according to the fal-

lowing relations:
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The wind stress on the surface is more complicated to handle be-

cause the water surface is deformable so that waves form,and also the

length scale of the turbulent wind field is so large that the wind stress

is highly variable in time and space [17, 25].

Several investigatars have derived expressions for the average

wind stress from measurements in the field [5, 16, 28, 74, 77, 79].If

the shear stress is related to the wind speed as follows,



1.25/U
10

10 U < 1 m/sec

0.5'U ~
i/~

�. 3. 24! 1 < Ulp < 15 m/sec Ref . [79]

2.6 ' 10 Ulp + 15 m/sec

1 ~ 0 10 Ul p < 5 6 m/sec Ref ~ [ ]

1.0 + 1.9 l � � ' ! . 10 U > 5.6 m/sec.5.6

10
10

�. 3. 25!

0 ~ 00228 + � 0 7 ~ 0/Ulp! 0 ~ 00263� ~ 3. 26!

20 < Ulp < 40 m/sec

Ref.[77]

0.577 ' 10 Ulp < 4.9 m/sec Re f. [28]

 -0. 125 + 0. 1427 Ulp! ~ 10 4. 9 < Ulp < 19. 2 m/sec.�. 3. 27!

19.2 < U 0 m/sec2.62

2 difference between resultsy it is tempting to fit one straight line
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The values given in the referenced papers are plotted in Figure 3-5. The

data in [ 5, 74, 77 ] were for ponds or lakes, and [16,28,79]used mea-

surements on the open ocean. There is a significant scatter of the data

and hence of the curves used to fit the data points. Wu's relationships

based on ocean data seem to give the best overall fit. Unfortunately,

there are two discontinuities in the suggested relation for CD ~ �.3.24!

which physically does not seem reasonable although some Justification is

attempted [79 ]. Considering the spread of the curves with a factor of



~ gi x ' 'g guaaaagyaor 5o> p pu> ~
60



relation as shown, with the equation

CD   1 1 + 0 0536 U 0! 10
10

�. 3,28! U 0 [ /B ]

In the range 0 - 10 m/sec, Equation �.3.28! agrees well with some new
results by Parker and Pearce [55 ].
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-3U10 = 10 m/sec, the drag coef ficient is 1. 64 ' 10 and the predicted

shear stress T ~ 0.2 N/m which is somewhat larger than the -0.1 N/ms

normally measured in Massachusetts Bay for similar winds.~ For wind speeds

ranging from 0 � 30 m/sec, we can conclude, the present state of the art only

allows us to predict the applied wind stress to within a factor of 2.

However, considering the complexity of this problem, such an error seems

tolerable.

Finally, the origin and significance of the internal stress terms

i T 'f , Y are investigated. To close the formulation we also
xx xy yx ' yy

try to express these terms as functions of the integrated flow variables

by means of an eddy viscosity coefficient matrix. The approach,in many

ways similar to the closure of turbulent flow problems [62]q is admittedly

based on a physically very loose foundation; but does yield an attractive

structure reflecting many of the expected real effects, viz dissipation,

and diffusion of momentum. The vertically integrated approach is only

valid when the internal stresses are relatively small, so an exact repre-

sentation of these terms is assumed to be of minor importance. All this

trouble is directly caused by averaging the convective acceleration terms.

However, the real root of the problem is the use of eulerian rather than

lagrangian description  in the latter, the observer follows a particle and



U = u + u' =  u + u'! +  u" + u'"!�.3.29!

V = v + v' =  v + v'! +  v" + v'"!�.3.30!

where u,v are ensemble averages  assiing the flow field is basically

random!; u', v' are random fluctuations whose ensemble means per defi-

nition are zero; u, v are the vertical average values of u, v; u', v'

are vertical average values of u', v'; u", v" are vertical deviations

of u,v from u, v ; and finally, u'", v'" are vertical deviations of

u', v' from u', v'. The significance of each of the various components

is shown in Fig. 3-6.

The product U V is now written out in terms of its components

U ' V  u + u' + u" + u'"! v + v' + v" + v'"!�.3.3l!

+ s r + c << +u v + u v' + u v" + u v'" + u'

and we want to perform an ensemble averaging and vertical integration

of this product. Noting that the order in which these are done is ar-

bitrary we first take the ensemble average with the result

 UV> uv + uv + u v + u v + u v + u v
ensemble

�.3.32!

1 II I i I ft Ilf+ u
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the convective terms do not appear!. We have to live with the eulerian

viewpoint in which the observer is fixed in space and propose taking a

closer look at the implication of ensemble averaging and vertically inte-

grating an instantaneous velocity product. Without loss of generality we

may write the instantaneous local velocity components U,V as



Figure 3-6. Sketch of velocity components.
U = instantaneous locaI value.
u = ensemble average local value.

ensemble average, vertical average.
u' = turbulent fluctuation
u"= vertical deviation of u from u.
u' = vertical average of u' .
u' = vertical deviation of u' from u' .
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since all terms containing only one turbulent fluctuation  '! average

out to zero. Similarly, an average over depth is carried out.

�.3.33!  UV! ensemble uv + u'v' + u''v" + u "v'"

where overbar means vertical aerage according to

�.3.34! x x dz
-h

Again, all terms containing only one vertical deviation  "! average to

zero. We can now write the total contribution from the convective terms'

l n<UV> +u"v"!dz
ensemble

�.3.35!

t Note that this contribution as ,in �.3.15! � �.3.16! is not strictly
correct, because we started out with the ensemble averaged equations.
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The first term in the integral on the right is the usual turbulent

Reynolds stress and the two remaining terms are momentum transfers due

to the vertical velocity distribution. The integral on the right has so

far not been related to the mean flow in a consistent and satisfactory way.

Consequently it is often neglected completely. The structure of the terms

is similar to the molecular momentum transfer process. But while the

latter is a homogeneous isotropic process characterized by the molecular

viscosity, this is not the case with turbulent motion and vertical velo-

city shear. Prandtl used mixing length theory to derive a virtual vis-

cosity for turbulent boundary layer flow [62]. ln order to get a closed

formulation we postulate a similar functional relationship without



invoking any mixing length theories.

p   0      ! +   I II 1'll!
x x x x o i j i j ensemble

�. 3. 36!

Bc}
E   ~ + ! i,j ~ 1,2 no summing over i,jij 3x 3xj

is a symmetric "eddy viscosity coef ficient matrix that depends on

the mean flow, depth, applied surface stresses and flow history. What

values actually should be used must be determined from experience or by

trial since the explicit dependence on the mentioned parameters is un-

+5known. In the literature 1 - 10 m2/sec have been quoted for the prin-

cipal values of E . In model applications to Massachusetts Bay, the

use of values up to 10 m /sec has apparently not changed the results

significantly. In spite of the nebulous circumstances we feel that the

inclusion of F has several attractive properties. It allows for
xixj

internal friction and thereby energy dissipation, provided E j is posi-
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tive; it does represent actual physical processes although not accurately!

and it is particularly suitable for damping short wave noise generated

by numerical methods.

As an attempt to bring some consistency into the anisotropic case

the direction of the local mean current is chosen as the major principal

axis of E with the minor principal axis perpendicular thereto. This

means that in a local coordinate system with the x-axis in the direction

of the current, Eij is diagonal:



EI 0

0 E2
�.3.37!

The corresponding E in the global coordinate system is then found by

simple rotation. If 6 is the angle from global to local x-axes,  see

Figure 3-7! the rotation is written

Rl 0
TEij T T

0 R
2

�.3.38!

where T is the transformation matrix

cos8 sino

-sin8 cos8
�.3.39!

and superscript T means transpose. In [ 5c] and [ 75], the ratio of

El to E2 was found to be in the range 10 - 60 for a tidal coast and

a lake. Locally negative values of eddy viscosity have been measured

indicating energy being fed to the mean flow by turbulent eddies; however,

this happens only under very special conditions. For large areas, the

overall effect of the internal stresses is to dissipate energy. []4, 67 ]

give a more detailed discussion of this topic with some examples.

We are finally in a situation where we can present a formulation

in closed form. For convenience, all the pertinent equations are given

below.

Conservation of mass
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Figure 3-7. Global and local coordinate-system.
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�.3.40! H + q + q = q
,t X,X ~,y

x and y equilibrium

�. 3.41! q +  uq ! +  uq ! � fq +  F - F !
X~t y ,y y p XX ,X

1 s b � 1 s
-F + �  v � t ! -m - �  p H +ApgHh ! -gvh 0

yX,y P X X
o

X P0
~X yx ~X

�.3.42! q +  vq ! + {vq ! + fq - F +  F-F !yet X gX y ,y 4~ Xy,X p yy ,y

1 a b - 1 s
+  Y - T ! -m - �  p 8 +hpgHh ! -gqh ~0

p y y y p y ~ y y

with the constitutive relations.

{3314! F - ghn+< g~'+Z g~ +~I An

P 2 2 p po

aq a
�.3.36! P E   ~ + � ! i,g 1,2 no summing over i,gij 3 xi Px

The bottom and surface shear stresses are given by � ' 3.20!-�.3,21!

and �.3.23! with �.3.28!.

3.4 Boundar Conditions

Defining the correct types of boundary conditions is one of the more

critical parts of the formulation process. Vhat prescribed values r,ust be

given, and where~ The consequence of not specifying enough is normally

the existence of non-unique solutions whereas too much may lead to the

non-existence of any solution. These issues are often overlooked because

the problems are formulated and solved bypeople who usually do not have
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proper.

Trying to get a better feeling for what boundary conditions are ne-

cessary, we note that the present flow problem is governed by one 2-com-

ponent vector equation which is the equivalent of Newton's 2nd law:

�.4.1! Force mass x acceleration

+
Fi m xi!

The law of conservation of mass �.3.4! is thus a constraint to be dis-

tinguished from an equilibrium equation.

It is well-known that for a single particle, a solution to �.4.1!

exists and is unique if an initial condition and either the force Fi

or the displacement x is prescribed. The intuitive generalization to

our flow problem is then to specify an initial condition and the force

or the discharge which plays the role of displacement in a fluid [ 4 ]
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t1 e necessary mathematical background  anc time! to worry abuut the

existence and uniqueness of solutions. Still, solutions havebeen obtained

and verified with great success, which probably is due to luck and the fact

that generally well behaved physical prohlems are solved.

Zn recent years, considerable efforts have been made by mathemati-

cians to prove existence and uniqueness of fiuid flow problems, notably

solutions of Navter-Stokes equations �4 ]. Unfortunately, such proofs

do not exist yet for our problem and are not likely to be made in the near

future. We shall therefore take the "engineering" approach and assume an

automatic proof if a reasonable solution is found. To that end, we have

to be reasonably certain that the prescribed boundary conditions are



at the boundaries. The initial situation is expressed. as

 q ,q ! ~  o  x,y!, q  x,y!! for all  x,y!in Band t ~ 0�.4.2!

river

Figure 3-8: Discharge and Force Boundaries

�.4.3! H 8  x,y! for all  x,y! t 0

On the boundaries there are two alter~atives as previously mentioned.

Referring to Figure 3-8, we distinguish between discharge boundaries

S and force boundaries S>. On S we write
P q

n a +n q
n nx M ny y n

� 4.4!
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Q is the entire interior domain and the initial time is taken as zero.

Also the initial mass must be known, thus



a + 5 q
s ny x nx y s

�. 4. 5!

for the normal and tangential discharges, where the direction cosines

are

0 - cos  n,x!; 6 - cos  n,y!
nx ny

�.4.6!

and the superscript * signifies a prescribed value.

On the remaining part of the boundary, S , the external force,

must be given, thus

F ~-F +0 F +c F +26 5 F - F2 2 'k

an p nx xx ny yy nx ny xy nn
�. 4. 7!

F  o � a ! F + e a  F � F ! F a
ns nx ny xy nx ny yy xx ns

�. 4. 8!

must still hold, however F * must be zero since no shear can be de-
ns

veloped and �.4.5! can hence not be imposed either.

The continuity equation �.3.4! is used to find the position of

the free surface. It is a mass balaace equation and does therefore not

require any boundary conditions.
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must hold for the normal and tangential specific force measures.

 Specific force measure is equal to a force per unit width and density!.

In the idealized case of an inviscid fluid �.4.4! and �.4.7!



Cl~TER 4

Tl>F. REAK FOR%

The solution to the problem outlined in the previous chapter

is in general too complicated to be obtained by analytical means. The

only alternative is then to employ a numerical technique. Ln the finite

elemert method, the true solution of the governing equations, constraints

and boundary conditions is approximated by a function composed of piece-

wise polynomials. The rigorous mathematical procedure for developing

the integral formulation on which the finite element method, FEH, is

based, is discussed in this chapter. Actual applications of the FEN

are described in the next chapter.

Prior to the use of approximative methods it is essential to

establish means of determining how close a computed solution is to the

exact answer. For finite difference methods this has lead to the im-

portant concept of consistency, i.e. the difference approximation should

approach the differential equations asymptotically as the discretization

is made finer. Since the finite element method generates an approxi-

mation to the exact solution of a given set of equations rather than to

the equations themselves, a completely different approach is needed. As

an example we consider the equation

u x! = 0 x 4 [a;b!

and the three trial solutions shown in Figure 4-1.

A common approach would require �,1! to be satisfied point by

point in [a;bj. With this requirement, only ul is acceptable. The
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error measure for u or u consistent with point by point compari-

son is given by the maximum deviation

error ~~u~I max  -~
xi[a;bJ

�. 2!

Alternatively, a less severe approach uses an average error as

measure. A simple average error is defined

b[~ju[  - I Jul ax
a

�. 3!

~X

b

U3U2Ul

Figure 4-1. Different types of trial functions.

j/
! !Il  ! IJ  tl x!! dR!

a

�. 4!

and does in fact belong to the class of positive norms which may be

written

g1'
ff u[[ =  u !!P dx p 1,2,3.o..� ~ S!

The variance �.4! is easily recognized as the p =' 2
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According to �.3! both ul and u2 would have zero error, whereas

the error for u is equal to the shaded area.

Finally, the variance or Euclidean norm ia c". ns'dered. It is

defined as



b

a u,v! u v dx
a

� 6!

where u belongs to the space of trial functions and v is a test or

weighting function. The norms given by �.2! - �.5! correspond to

choosing v equal to a delta function, the sign of u, the function

p-1
u itself and u . The test function is restricted only to the space

of functions for which the inner product is finite.

The admissible function spaces for u and v are furthermore

derived from �.6!. Consider for example the equation

a2
LU u f  x!

 }X
xg [a;b]�.7!

with the boundary conditions

�. 8! u = 0 for x a

u = 0 for x=b
,x

�. 9!

L is in general a differential operator, but for this example
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norm. Again ul and u2 cannot be distinguished from the true solu-

tion or each other for any 2 < p < ~, whereas u3 will have some error.

The l norm  p = 1! is equivalent to the geometrical mean and is nor-

mally too liberal for our purposes. Only with the max norm, �.2!, which

is identical with the ~ norm,  p = ~ !, can u2 be distinguished from

ul q and u2 is said to deviate in a set of points of measure zero. So

far we have listed some commonly used metrics. These can, however, all

be interpreted with an inner product representation.



L =�
gz

Qx

�.10!

For the trial function u , the following error measure is derived

b

 Q � Q-v dx - [6 v]
XX ~x x=b

a

a Lu � f v!�. 11!

The trial function 0 must satisfy condition �.8!, which is called an

essential condition. Equation �.9! is a natural condition that will be

automatically satisfied. However, since we do not require u to satisfy

�.9!, we have added the possible error in �.11!. A more detailed dis-

cussion of natural boundary conditions is contained in [68]. Requiring

the error given by Equation �.11! to be zero yields an integrodifferen-

tial formulation on which all finite element work is based:

b

 u � g! v dx - [u ' v] = 0
a

XX x x~b

A
�.12! is defined and finite. Thus, each of the functions u, f, and

~ XX

v must belong to the class of square integrable functions:

Having seen how the error metric naturally leads to an equation

for the trial solution, we now turn to the question of what restrictions

must be imposed on the function spaces for u, f, and v. To simplify

the problem, we will not distinguish between solutions that only differ

in a set of points of measure zero, thus we shall exclude v from con-

taining delta functions. For most practical cases involving a contin-

nuum, this simplification is of no consequence. However, far discrete

problems it is crucial, and these are therefore also excluded in our sub-

sequent considerations.

The minimum requirements simply assure that the integral in



w v! c W~  i! > w w!|.  w u,' i w  M!  iz < !
2

A

W is a Hilbert  or Sobolev! space [46! and is also denoted by L2 ~0

For our purposes it is equal to the space of piecewise continuous

functions. The equivalent requirement to u is that it belongs to

W which has the property
2

w e!E W �! ~w v!c w e! if<  w  a! + w  �! + w    !!!d& ~!�. 14!

The major advance from this point. comes from realizing that

several equivalent forms can be derived from �.12!. The objectives

are to relax the functional requirements in order to facilitate the

construction of admissible trial functions,but, also to assure that the

solution exists and is unique. It is obvious that any u satisfying

�,7! - �.9! also satisfies �.12!. It remains yet to be shown that

the opposite holds. This is achieved by proving existence and unique-

ness of solutions to �.12! or its equivalent forms. These other

forms are derived by partial integration of the integrand in Equation

�.12! ~ Integrating once yields

r b u v � fv! dx � [u ~ v] 0
yX yx yx x~a

a

�. 15!

satisfied explicitly. Since u is not necessarily
,x

we must require v to vanish where u is prescribed.

not have to be

zero at x ~ a

However, there is no loss of generality as the error is eliminated by

requiring u = u at x = a. More important is the change in functional
76

Equation �.15! shows why �.9! is called a natural condition and does



requirements to both u and v, that now must belong to W> with the

property.

�.16! w z!c W  Q! > w g!cfw  g! I  w  u!! + w  u!!! dv<m}
2 gb'

The relationship between the three spaces mentioned so far is

- � � � piecewise con t inuous

w' unbounded

I 2

I

I
I
I
I

I
I
I
I

functions

Figure 4-2. Relationship between function classes.

W c= W c= W = I.
2 2

�. 17!

which schematically is shown in Figure 4-2.

For our purposes we need not distinguish between W~ and C
2
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m m
times, thus  u p W ~ v c W2 ! . These equations are called 'the weak

formulation f 34, 68 ] and constitute a "balance" between existence

and uniqueness. More important, u and v are chosen from the same

function space W2 , faci'itating the application of the finite element

method. The weak form is optimal fram a computational point of view

because W2 is the most extensive class of functions from which bath

u and v can be chosen. We note that the weak form is equal to

Galerkins principle and variatianal statements when these exist. Ta

distinguish between problems for which solutions of the weak form have

been proven to be unique these are called generalized solutions and

[ 3-'~,68[. We also point
k"

3 u
are natural for

the weak form is called the generalized form

out that homogeneous boundary conditions an
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the continuous functions, or W2 and C', the functions with continuous

first derivatives as long as these remain bounded. Clearly we have

achieved an extension of the space from which u is chosen when using

�.15! rather than �.12!. As a general rule~this makes it easier ta

find a solution - possibility of existence is improved � however, unique-

ness is harder to prove because the solution space is larger. First we

note that an extension of the class of functions from which u may be

chosen only occurs when the highest derivative of I. is integrated by

parts. Secondly we postulate that the practically more optimal form is

achieved when u and v can be chosen from the same function space.

This applies to even �m!order  self-adjoint! differential equations.

For differential equations of odd order �m-l!,there are two preferred

Jg Jtl- I JR 1formulations  u z Wm ~ v z W ! or  u g W, v p W j. For equations

of order 2m, the optimal form is obtained by integrating by parts



k -> rr and essential for k . m.

The simple example we have just discussed illustrates how

the introduction of a general error measure logically leads to an inte-

gral transformation of the original governing differential equation.

We indicated the reasoning behind choosing the weak form and how to

derive it systematically when several equivalent integral formulations

exist. We also advanced the hypothesis that the weak form is optimal,

at least from a computational point af view, because it allows u and

v to be chosen fram the largest common class of functions. Finally,

the weak form is balanced with regard to existence and uniqueness of

solutions, and it is identical to the first variation of the functional

when a variational principle exists.

The procedure outlined above is subsequently applied to

derive a weak formulation of the vertically integrated circulation

equations. First it is noted that an existence theorem of solutions

ta the three-dimensional transient Navier-Stakes equations so far has

evaded the mathematicians, although Ladyzhensl aya [34 J was able to

show unique solvability given existence, when the velocities are pres-

cribed everywhere on the boundary. Her approach has been extended by

Aranha [ 3 ] to mixed problems with either pressure or velocity

prescribed as boundary condition. Unfortunately, a rigorous proof af

either existence or uniqueness of solutions to the vertically integrated

formulation does not exist at present. A heuristic proof of these pro-

perties is given in the next chapter for the finite element approximate

solutions. This is still a step away from showing existence and unique-

ness of solutions to the original farmulation and theoretically we must
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therefore verify all solutions carefully.

First the continuity equation �.3.4 i! is transformed:

{H + q + q � q ! >HdA = 0
,t x,x y,y I

�.18!

�.19!

1 s b � 1 s
+ �  T - T ! � m - �  p H +ApgH h !- gqh !Qq dA

p x x x p gx ~ X px X
0 0

S

{a q a qs - q ! bq ds 08 nx n ny S x
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where Fi is the interior of the domain of interest, hH g L is an
2

arbitrary test function and the special notation is used to point out

the resemblance with an admissible variation. According to Equation

�.18! we must require H,q ,PH g L and q ,a EW . One might con-
x

sider integrating the q and q terms by parts to relax the
Xix

continuity requirements; but as we shall see, the dynamic equations

make it impossible to achieve this improvement.

The momentUm equations �.3.41! � �.3.42! with the boundary

conditions �.4.4! � �.4.5! and �.4.7! - �.4.8! are rewritten



I +  vq ! + vq! +fq -F +  F-F !
! yet X ~ X y fy X Xy ~ X p yy,y

�.;? 0!

1 s h � 1 s,+ p  z -T ! � m � �  p B +hpgHh ! � +h }ho dA
y y y p

* 1
$g F + cL  F -F ! � F ya'q ds

nx xy ny yy p ny y
F

+  a q +o q - q+} aq ds 0
ny n nx s y y

In the integrale over the prescribed force boundary S and

specif ied flow boundary S we have for convenience used the expressions

for the x and y components of force and flow  Figure 4-3!:

�. 21! F ~ ct  F -F!+g F
nx nx xx p ny yx

�. 22! F ~ g F +o,  F � F !
xy

�. 23! qx nx qn ny qs

�.24! qy ~~ qs + ~ny qn

The existence of derivatives of the internal stresses means

that when �.3.36! is substituted, second derivatives of the discharges

This again requires q q to at least have con-q , q appear.
x y
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tinuous first derivatives and therefore belong to W . The test func-
2

tions Qo,l c.' however still only have to belong to L . We would thus' 'y

in our search for a solution have to restrict ourselves to trial func-



2
tions belonging to W and test functions belonging to L . According2'

to previous arguments, this "unbalanced" situation is undesirable. It

is difficult to find admissible trial functions and it is also harder

to prove existence of a solution. However, if a solution is found, it

is easier to determine whether it is unique because the trial functions

belong to s more restricted class of functions.

Xt is possible to obtain a better balanced form by integrating

the terms containing the highest derivatives by parts. From �.19! we

F
ny

 F F!
xx p� � � -+ F yx P

I
 F -F ! ~ q

yy p

Figure 4-3. Boundary forces and discharges.

have

�. 25! { F � F !~.
p xx xyx yx xqy

where 5 is the perimeter of P, . Similarly for �.20!.
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t  -F +  F � F ! j Aq dA
p yy

F +0,  F � F ! j hq ds
nx xy ny p yy y

F Aq +  F � F > Aq dA
p

� ' 26!

f inally obtain:

l s b[fq + ua! +  ua! � fq + �  T � T ! -e
x,t ~ ,x ~ ,y y p x x x

C

�.27!

- �  p H +hpgHh !- ~h j hq - i F- F !Aq
l s

P qx !X gx x p xx yx
0

'yx hqx y>> ~

 F � F ! + ~ F j hq ds - F hq ds
xx p ny yx x nx xC.'

uF

+ I+ q -o q � q}hq ds ~ 0
s

r [ q +  vq ! +  vq ! + f
x ,x y ,y

� �  p H + APgHh !- gqh !hq
1 s

Po

1 s b+ �  < -< ! � m
y

�.28!

yyx

+  F- F ! hq j] dA
p yy yy

 O. F +a  F � F !jhq ds
nx xy ny yy p y

F

+  a q +a q � q*j ha ds
ny n nx s y

S

F hq ds
ny y

SF

0
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Substituting these results into �.19! and �.20! we



far the actual forces F and
nn

F on a forced boundary have never
ns

been measured and it is probably not possible to do in most cases.

The reason is, that in order to determine F , F , F fai'rly accuratexx' xy' yy ~

current measurements are required simultaneously along the boundary

 synoptic data!. This in itself is a tremendous data acquisition and

handling problem; but even worse, reliable current meters for the

ocean environment do simply not exist at present. Viegel and Johnson

give an introduction to current meters, measurements and their prob-

lems in their paper [78], If current information was available at the

boundary, it would anyway be easier and more direct to use those as

prescribed conditions rather than trying to derive the internal stres-

ses.

By now it is clear that we cannot expect to get the information

we need, however, the surface elevation, its change and thus the.
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Equations �.18!, �.27! and �.28! are called the weak form,

As previously mentioned, when solutions of the weak form have been shown

to be unique it is called the generalized form, and the solutions to

the classical differential equations are contained as a subset in its

solution space. Unfortunately, we are at present not able to establish

uniqueness of solutions to our system of equations. Our primary ob-

!ective is to find a solution, and xelying on the fact that we are solv-

ing a well defined physical problem we shall assume it to be unique.

However, we will have to evaluate such solutions to make certain they

are reasonable and preferably real data verification should be done.

Before concluding this chapter with a closer look at the land

boundary conditions, we must introduce one further approximation. So



This section is summarized with the equations note V � S S !for
F q

conservation of mass and dynamic equilibrium:

r {H + q + a - q ! AHdA 0
p «t x,x y«y I

�. 18!

1 s bI.{q +  uq! +  uq! - fq+ �  T T!x ~ t x «x p X x
0

�. 29!

 P H +~pgHh !- gnh !aq � { F - F ! Zq�1 s

p «X «X «X X p xx «X
0

Aqx l] - {a�  - F!+a F !pq ds
Sq

+ a F hq ds + {~ q - ~ q - q 
q ds 0
SF Sq

pressure force is usually known or can be obtained with reasonable

ease. Ve shall therefore in view of the above and in order to get a

solution assume that Fi is zero along prescribed force boundaries.

At this point« a very pertinent question should have evolved,

and that is>why do the F . enter in the boundary conditions when the
ij

mean convective terms do not? Originally they all came from the same

convective inertial acceleration terms. The answer is that in an en"

semble averaged, vertically integrated formulation the inertial accele-

ration consists of the local and the mean convective accelerations,

whereas the momentum transfer due to turbulence and vertical velocity

shear are internal st re sses ~



s bIjq +  vq! +  vq ! +fq + �  g �, !
X ~X o

�. 30!

1 s
�  p H + ppgHh ! � g h L5q �  -F
p ,y y x> y x0

+  F � F !hq !] dA - ','e F +R  F � F !>hq ds
p nx xy ny yy p ' y

+ e F* hq ds +  o q + m q � q*jhq ds 0
ny p ny n nx s y y

SF

Variables with superscript * are prescribed. The surface wind pres-

sure fields and the bottom elevation are assumed known. The trial

functions H, q , q and the test functions dq , Aq must all be
x x' y

1
of class W, i.e. they must be continuous in A + 0 and only LH

can belong to L2. We could have chosen to integrate the terms

p H Dq and
8

~x x

requirements to

would have to work with surface pressure gradients rather than the

pressures themselves. The possibility of choosing H and AH from

1L is really not any help anyway, since q, q must come from W .
x' y 2

Finally we investigate the line integrals over S in more

detail. Two cases are considered:

Case 1: Edd Viscosit Terms Included E qn�

and q prescribed.
s

Zn this situation the specified discharges are easily trans-

formed into conditions on q , q and as was seen in the example,x' y

this leads to a requirement of the vanishing of the test functions.

p H hq

H from W

by parts also, thereby relaxing the

to L2. We decide not to because we



Thus for this case, the integrals over S can simply be neglected.
q

Case 2: Edd Viscosir 2 ared E 0 E Prescribed

The boundary integrals reduce to

t - a F 5q ds + a  q-q !hq ds 0
S

nx p x nx n x
S

�. 31!

-a Fho ds+ a  a -q! Aq ds ~ 0
ny p ny

S S

�. 32!

Adding �. 31! to �. 32! yields:

 - F +  q - q*!! a hq +a aq ! ds
p n n nx ny y

S

�. 33!

 - F +  q � q !! �q ] ds 0
p n

S

kq - a ha + u hq
n nx w ny y

�.34!
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Since prescribing q means that hq must be an admissible

variation that is hqn = 0 on S , the equation is

automatically satisfied. Again the contributions from S can appa-

rently be neglected. The reservation expressed by the word apparently

is intentional because in actual applications the situation can be

quite different, and this is largely due to the fact that we are dealing

with a vector  velocity! rather than a scalar quantity. Since the

actual treatment is dependent on the discretization, we delay further

discussions until the finite element method is described.



CHAPTER 5

FINITE ELPfENT METHOD

Briefly stated, the finite element method FEM, provides a

systematic way of generating approximate solutions to a given problem.

Its great impact on the field of numerical methods is greatly due to
the partitioning of the domain and the use of simple polynomial expan-
d'ons in each subdomain. Thus, in two spatial dimensions, the total

area is divided into subregions and in each of these a function is ap-
proximated by a simple polynomial in the coordinates x, y, called a

trial function. For a more general discussion, the following refe-

rences are useful [ 10, ll, 80, 68]. In the latter it is shown that

provided the functional requirements to the trial functions are satis-

fied, convergence of the solution is assured as the subregions are made

infinitesimal. The advantages of this method are that any  reasonable!
function can be approximated, each subregion called an element has its

own polynomial expansion independent of all other elements, and there-

fore the treatment of the entire domain is systematically handled by
summing the contributions from each element.

In Chapters 3- 4, the type of element used did not have to be

considered, which � as mentioned earlier � is one of the great advan-

tages of this method since the properties derived from the weak form

are general. To proceed, we must now make some assumptions about the

type of elements to be used. According to the weak form �.18!, �,29!

and � ' 30!, both test and trial functions must be continuous and belong
to W . The linear triangular element is the simplest satisfying
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1 1 2 2 3 x3 --x

�.2! q - 6 Q 1+ �Q�2 �Qy3 ~Qy

�,3! H ~ g H + g H2 +   H ~ 4H

~here the superscript e designates element nodal 'alues of the va-

riables which are fixed in space; the tilde denotes a matrix; 4]

3 are normal i zed e l ement coordinates  Figure 5- 1 !, and

[F.1C2 E3 l�. 4!

The square bracket is used to denote a row vector or matrix. The

transformation from x,y to 4 , g is easily shown to be

2A   +bi +aiy!1
�. 5!
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this cr iterion. As our primary objective is to obtain a solution to

our problem rather than trying to optimize the solution method per se,

we choose to work with this simplest alternative and not consider

higher order elements. The main incenti.ve for using higher order

elements lies in the improved accuracy for the same number of unknowns,

which is an area perhaps worth investigating further.

The strategy is to develop the functional relationship for

a typical element and then sum up the contributions from all elements

to obtain the system equations. Following Connor [1i], this element

is based an a linear expansion for the variables.



where

� 6! a ~ x � x

�. 7!

� g!

1
A 2 ~'1 a2 � b2 !

al
�-9!

e.g.

�. 10!

Similarly, integrals are found in ihe transformed 4 � 4 space,

e.g.:

1

q dA 2A C   r dg> df�. 11!

� +e +Q !
3 yl y2 y3

The general integration formula is

r i g k dA�.12! ~ 2A

 i + ] + k + 2!!
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 i,!,k! is an even permutation of �,2,3! and refers to the element

nodes numbered countercloclarise.

Derivatives are conveniently found by chain differentiation,



 x2,y2!

Figure 5-1. Normalized element coordinates,

Consider any arbitrary element for which it may be assumed that

a variable is expressed in terms of shape functions $ and nodal

variables U.

u < U g xy! ' U t!�. 13!

where g is a row vector reLating element geometry similar to �.4!>

and U is a column vector of the element nodal values of u.
e
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These relationships for the linear triangular element actually

only serve as an illustration, because we can proceed without making an

explicit assumption of the type of element used, as long as the shape

functions satisfy the functional requirements of the problem. This is

another major advantage of the FEH, and the reason that it lends itself

so well to higher order  more accurate! approximations.



The finite element analogue of the weak equation �.18! for

one element is found by substituting the equivalents of �.13! for

each of the variables, resulting in  superscript T means transpose!:

e T
 bB ! g  !H + g Q + ! Q � gQ ! dA 0

f
�.14!

To obtain the integral over the entire domain  ; we simpiy sum the

contributions from each element. However, rather than using �.14!,

we choose to work with a slightly different form which is derived

from �.18! multiplied by g.h. This causes no loss of generality

since h is a known positive smooth function, but it makes the FE

equations particularly attractive as we show shortly.

Multiplying �.18! by gh yields

r  gh H + gh q + gh a � gh q ! N dA 0
xrx I

�. 15!

of

�.16! gh 5H

Applying the finite element method to �.15! gives  again for one

element!:

T
 hH ! 4 g gh! 4H + 8 �h! 4 Q + g�h! 4

A

�.17!

g yh! yQ dA 0

where h are. the nodal values of the depth h.

Zt is obvious that �.15! is obtained from �.18! by a redefinition



To obtain the integral over the entire domain << we simply sum

the contributions from each element:

 gh ' H +gh q +gh q -ghq! LPdA
Xpx

NMEL

 bH i! <P  g gh! gH + g Qh! $ Q
A

i

�.18!

+ g  gh! $ Q � g $h!  f!Q ! dA = 0

NMEL is the total number of elements. Only g is a function of space

 x,y! and the relationship is known for a given element type. The

integrals are hence easily evaluated once the grid layout is determined.

We introduce some symbols to simplify the writing:

0 84dA
i T

�. 19!

2 1 h2 2h3

2h + 6h + 2h ~ h + 2h + 2h

h + 2h + 2h 2h + 2h + 6h

gA

60

Ai
i

T
a $ g dA a

Ai
�.20!

12

G
i

g4 �h! 4 dA
A

gM

2Ai
�. 21! hlal hl 2 hl 3

h2al

h3al
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6hl+ 2h2+ 2h3

2h + 2h2+ h3

2h+h+ 2h

2 l 1

1 2 1

1 1 2

h2 2 h2a3

h3a2 h3a3



G ~ g $  $h! $ dA

1

�. 22!

For illustration, the results for the linear triangle are also

shown. Bue to the simple integrati.on and differentiation rules for this

element, �.12! and �.l0!, the integrals are easily evaluated anal-

ytically. For mare complicated elements and trial functions, numerical

integration is more attractive. We emphasize, though, that both MP
i

and N per definition are symmetric.

Equation �.l8! is now written.

j MH !  N 8 +G g +G 9 -N Q } dA 0
i 1

�.23!

Formally carrying out the summation we obtain the system equation

 M! fQ H + G Q + G Q Q QT!

Since the elements of LH determine the test function, which is an

arbitrary function, the terms within the braces must vanish. This re-

sults in NNNP equations, where NMNP is the number of node points:

�. 25!

Next we prove an important property of N . For the sake of

argument, let

�. 26!

94

N, H +G Q +G Q � N. Q ~ 0
n -,t x-x -y-y -n -I

hlbl hlb2 hlb3

h2bl h2b2 h2b3

h3b 1 h3b 2 h3b 3



i.e. we choose the test function identical to the trial function.

Then the first term in �.25! is'-

�.27! H K H �  H N H+ H M H !  H
T 1 T T 1 3 T

-h ~ ~ 't 2 �,t -h

h H~ dA1 3

2 3t

Thus we have

�.28! H M H ~ h H dA > 0
T

-h-

For finite depth, h > 0 everywhere in 0, the equality can

only hold if H t   H ~ Ht dd 0 j which would imply that H
A

is a zero matrix. It follows that M is symmetric positive real and

therefore also non-singular, i.e. the determinant of Nh is non-zero.

Other variables expressable according to �.13! are the surface

dlevation q, surface pressure p , denisity difference 5p, surface

8stress T and momentum source ma Bottom friction coefficient Cf

and eddy viscosities E are assumed as element properties since

this gives the more precise description

In Figure 5-2, a and b, this is demonstrated by showing the domain

of influence for a prescribed nodal or elemental value respectively.

The assemblage of the equivalent system equations for the equilibrium

equations �.29! and �.30! is completely similar. The intermediate

steps are therefore left to appendix A and the result is directly

quoted here.'

�.29! NQ � G q+ F Q + E Q - fMQ PT
-x t x ' xx x,.yx y x

95



M -G q+E Q +E +fHQ P
T

- -v.~ -x - -~ - -vv -v
�.30!

where E , E E , andT
xx ' xy -yx' E, are assembled from

-ij J -ij !i ! j il jl 21,2 -,2E  E $ $ +6 6 E�.31!

k T
+ 'i2 'j2 E12 <,i<,1' ~

where 6. is the Kronecker 6! and 8 is assembled from �.20!.

a Prescribed nodal value b Prescribed element value

Figure 5-2. Domains of influence.

The terms in �.29! and �.30! represent the contributions of iner-

tial acceleration, linear part of specific pressure force measure,

eddy viscosity � terms! and coriolis acceleration. The remaining

terms are lumped in P and P . Since prescribed discharge condi-
~X

tions  see �.44! and �.33!! imply a coupling of q and q, we
X

find it more convenient to define a new nodal variable
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� ~ 32 ! I.Q� Q Q� Q Q� 0 J
node 1 node 2 node NMNP

Equations �.25!, �.29! and �.30! are then simply written

�. 33! M Vi +
1

G Q-1

�. 3'! Eq+cq - PM
-2

where we define

�. 35!

�.36!

�.37!

Subst itut ing �. 37! into �. 33! f inally yields

�. 38! M q + G Q ~ P
~'t

It is now apparent why we chose to use �.15! rather than �.18!. We

have achieved complete symmetry or skew-symmetry in the total system

coefficient matrices. This is most clearly demonstrated by showing the

partitioned form of �.34! and �.30!.

M , G , E C and P are simply the results of merging the element
-Q

matrices according to �.32!. The structure of the finite element equa-

tions for the circuIation problem is fulIy displayed by noting



o I�. 39!

2x NMNP

G
I

I G

NMNP 2x NMNP NMNP 2x NMNP

 G -- G and C!
T

totally skew-symmetric matrices

0 I G0I 00 G

�. 40!

0 f E-G E+C
T

P and P are arbitrary vectors containing the load and non � linear
H

contributions. lt is emphasized that the structure of the equations

�.34! and �.38! or �.39! is independent of choice of element

type or grid configuration.

By applying the FEM we have transformed the integral equa-

tions to a system of non-linear ordinary differential equations in

time. Before solution methods for such systems are discussed in the
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Recalling that both Ml and M2 are symmetric positive real>

it is easily shown that the first coefficient matrix in �.39! is also

symmetric positive and non-singular This in fact is, at least heurist-

ically, sufficient and necessary proof that a solution to the finite

element equations exist and is unique. The proof follows immediately

from the theorems of linear algebra concerning systems of inhomogeneous

equations with a non-zero Cramer determinant, see for example [48].

The second coefficient matrix in �.39! is a sum of a purely

symmetric non-negative  positive semi-definite real! matrix F. and two



next chapter we look at how boundary conditions are treated and the

errors associated with the F&f.

8 and the angle fram n to L is 81.The interior angle is denoted

Simple geometry then yields

�.41! � q L ' sin  T/2 - 6 ! � q L sin  m/2 � 0 + 8 !1 1
2 s 1 1 2 s 2 ' 1

which is equivalent to
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First the problem of defining the normal at region boundaries

has to be resolved. Figure 5-3 shows a physical boundary segment and

the hypothetical finite element boundary. With straight element sides,

"breaks" necessarily occur in the model boundary when a curved coast-

line is approximated,and a nodal normal direction cannot be defined to

agree with both normsls of adjoining segments. Consequently, when the

tangential discharge is left free it gives rise to flow across the ad-

joining segments as sketched on Figure 5-3. This in itself is not ne-

cessarily a bad effect, in fact, it is perhaps a better simulation of

the real flow, however, .there is a question of whether mass is con-

served. Considering this as the key issue we use the criteria of con-

servation of mass to define the nodal normal. Using the definitionson

Figure 5-4 which shows both a convex and a concave break, we find 01

by balercing the flow through segment 1 of length L with flow through

segment 2 of length L2. To obtain a general relationship we define

a positive direction of traverse of the segments such that the area

under consideration is to the left and the normal to the right. For

a contour enclosing the domain this will be a counterclockwise sense.



Figure 5-3- Curved boundary with FE
approxirnat Lon.

I=igure 5-4. DefI.nitian sketches for boundary
normals. Convex and concave corners.



�.42! Ll cos Bi = L2 cos  8 � 0 !

Solving for 01, we first expand the right hand side

�.43! Ll s 1 L2 cos C coaxal + L2 sin 0 sin 91

and then rearrange to obtain the final answer

L2 sin 0
�.44! cot 8

1 Ll L2cos 8

NX~ P

1 k-1
ml ~ ~ ~ ~ ml

k+1
0 ml

k+1
k-1

k
0" "0 m 0"- -0

1

N
~ ~ ~ am 0

0." 0 0""0k
k-1

1 k-1

k-1 k-1
0

-0 ""0 1 0" "0 ~ X0 .".- 0 1 0- 0

1 k-1 k+1 N

k+1 k+1 k+1 k+1
0" ~ "0 m 0 ~ ""0

k
0

k+1 0 "0 m�0 ~ ""0 0k1 k-1 N"'" N
N

Figure 5-5. Treatment of prescribed variable.
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For 9 < � both discharge components should be prescribed7r
2

zero since the existence of a tangential flow is physically unreasonable



and also can introduce numerical difficulties.

A prescribed nodal value is simply treated by erasing the corre-

sponding equation in �.39!. Computationally, this is done as sketched

in Figure 5.5. If the k'th variable is prescribed, the k'th column in

the coefficient matrix M is stored, then the k'th row and column in

M are set to zero and the diagonal element set equal to one. Finally,

Figure 5-6. Prescribed normal discharge.

the stored column matrix is multiplied by the prescribed value x* and

subtracted from the right hand side. This procedure effectively re-

places the k'th equation by the prescribed constraint and keeps the

symmetry of N.

Finally, we show how a discharge in any arbitrary direction

can be prescribed. If we for example want to specify the normal dis-

charge q in a point P  Figure 5.6!, where the normal  given by �.44!!

has an angle 8 with the x-axis, then this is best achieved by trans-

forming the discharges in P from the global x,y coordinate system to

102



a local n,s coordinate system. Simple geometry again gives

�.45! n ~ xcose+y sine

s x sin 6 + y cos 0

coee sine x
�.46!

sin 8 cos 8 y

T 1
Since T is an orthonormal matrix T T, the transpose is equal

to the inverse of T. Hence we have

Qx
�.47!

To demonstrate the procedure we simplify �.34! to

�.48! M Q ~ P
-2 -!t

and substitute � ~ 47! in �.48!, yielding

M T Q ~ P
2 -S -Let -Q�. 49!

The system transformation matrix T has the form
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�.5O! ~ 0 ~ ~ 0 0l 0

~ ~ ~ ~ s 00 ~ ~ ~

and Q> is the local discharge vector.

�. 51!

node l node k node HHhP

The coefficient matrix is now M T which is unsymmetrical. SinceT

it is desirable from a computational point of view to have a symmetric

coefficient matrix, �.49! is premultiplied by T
S

T
TS M2 TS Ql TS Pq�.52!

T
N2 TS M2 TS�. 53!

only have to be done once for a problem.
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which brings the structure of the system back to what we started with,

viz. �.48!. The prescribed value of Q can now be handled exactly the

same way as earlier discussed for a prescribed boundary value. Fortun-

ately the transformation of N



Turning the attention towards an analysis ot errors,

we recall that convergence of the FE solution to the true so-

lution of �.18!, �.29! and �.30! was shown by Mlhklin [4gj. The

positive definiteness of the system coefficient matrix assures the exis-

tence and uniqueness of a solution. Our final concern is directed to-

wards the accuracy of the approximate solution for a given discretiza-

tion. As for the above properties, the theory only covers linear prob-

lems, a more complete treatment is left for the future.

If the order of the original differential equations is 2 m

 or 2 m-l! in spatial derivatives, t'hen convergence occurs if and only

if the elements reproduce exactly any solution which is a polynomial

of degree m; this is called the constant strain condition [68].

The measure of distance between the exact solution u of the weak form

and the optimal trial function u is
As

a u-u,u-u !  C gs
a,s As, 2 k-m! jul'

k
�. 54!

2 k m!
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where a um, u-u ! now is the energy inner product; C is a con-5s 5s

stant depending on the construction of the element; hs is a typical

dimension of the element e.g. the largest height; k-1 is the order of

the highest polynomial exactly representable by the element; and f, is

the data, i.e. prescribed forces. In order that any polynomial of de-

gree k-1 can be described, the basis must be uniform as M~ 0. This

is effectively a geometrical restriction which forbids arbitrarily small

angles in triangular elements. A basis is a set of trial functions from



and m l, thus the error measure is

a u � u ~ u � u ! < C hs !fJhs hs�.55!

and we see that the rate of convergence is proportional to hs . The

relation �.54! holds for smooth Q; but any data whose inner product

with the test function is finite is admissible.

In the case where f, contains a b-function, the error can

be shown to be order of hs and if s node is placed right at the dis-

continuity of f,, the error cannot be determined in general, however,

convergence is still easy to prove [68]. We shall in an application

with a point source see how these theories very nicely predict the so-

lution behavior.
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which any function in the solution space can be formed by linear com-

bination.

Reiterating our problem with linear triangular elements, k 2



CHAPTER 6

TIHF. INTFXRA'1 ION

there is a total of 3 x NMNP w 900 equatioas
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each node, H q and q
X

By using the finite element method, the original continuous

problem is reduced to a system of ordinary differential equations in

time. To complete the model, an effective technique must be developed

to advance the solution in time from a given initial condition. The

choice of scheme depends or required features of accuracy, stability,

programmability and computational efficiency. These items have been

studied fairly thoroughly for systems of equations derived by finite

difference methods j60, 61], however, such studies have only recently

been initiated for finite element equations [50].

For the set of first order ordinary differential equations re-

sulting from our flow problem there is no real advantage of using the

finite element over finite difference methods for time integration,

especially since there are no complex topography or boundaries to fit.

We therefore seek a scheme from the realm of time stepping or Runge-

Kutta type methods.

Many sophisticated methods have been developed. However, we

can quickly convince ourselves that not all these can be used. Our ex-

perience shows that to simulate the circulation properly in s coastal

area like Massachusetts Bay,about 300 nodes are necessary when using

the linear triangular element. Incidentally, the number of elements

8?RI. is approximately 1.5 times the number of nodes, NMNP. NMNP of

course depends on the desired accuracy of the results and the magnitude

of gradients in the area. Since there are three unknown variables in



�. 1!

These examples are also found in most books on numerical integration

[47, 58, 60, 61 ]. We shall assume a given initial condition hence the

problem is to propagate the solution from time t n . At to
n

t +1  n+1 ! At, a 1 though this symbo 1 i sm imp 1 ic i t ly assumes the t imen+1

step At is constant, it will appear as we proceed how variable At

can be incorporated. Define

�. 2! y y at t=t
n n

and
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and unknowns. To compute the circulation for a storm situation, a

period of about 5 days must be accounted for. With a semidiurnal tide

imposed we must compute the unknowns every half hour or preferably 20

times per tidal period to obtain real time accuracy. Therefore we must

solve the system of equations at least 20'2'5 200 times. Often this

number is increased by an order of magnitude when the stability require-

ments of the integration scheme limits the time step. Realistically,

we must reckon on solving 900 equations up to 2000 times. Even using

computers, only the simplest and fastest techniques can come into con-

sideration.

The simplest scheme is the so-called Euler method. For lucidity

we shall first demonstrate how each of the following methods that we

shall discuss is applied to a single variable and equation of the form



dy =  ~!
n dt

t~t
n

<e. z!

then the Euler form of  l! is

yn+l yn
+ y f y,t !n n' n

�. 4!

This scheme is sometimes described as a replacement of the derivative

by a forward difference. The discretization or truncation error TE

committed in .�.4!is found by expanding y in a Taylor series around
n+1

y yielding a leading error.'
n

yn+1

ht
TZ - ~y

n
�. S!

'ty �  y + ht y + Qt y + Q B,t ! � y !I
n ht n n 2t n n

1 ~ s

2 n

- 0  ht!
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Because TZ ~ 0  ht!, this method is called a first order method.

Besides accuracy, we are interested in knowing the stability of

a scheme. A stable scheme will not amplify a small introduced error as

the integration progresses. To investigate this property for an arbi-

trary problem and scheme is mathematically untractable. So far we have

only learned to deal in a systematic way with linear homogeneous ini-

tial value problems, i.e. disregarding boundary conditions.

To investigate the stability of the Euler method we use the

method of von Neumann [GO] and assume



�. 6! y +1 Ay

�. 7! Zy - y + Zt y 0
n n n

or solving for

1 � Qt

The von Neumann necessary condition for stability when the true solu-

tion does not contain an exponentially growing function is

�. 9!

In the example we would thus have to restrict the time increment to

the interval

� ~ 10! 0 etc, 2

Due to the condition �.10!, the Euler method is called a conditionally

stable scheme.

Returning now to the circulation problem we introduce the de-

finition
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where both X and y are complex quantities indicating a modulation
n

of amplitude and phase of the solution. Substituting �.6! into �.4!

neglecting the inhomogeneous term yields



which simplif ies �. 34! and � ~ 30! to

M 2+G X+K I+C X � P�. 12!

� ~ 13! M
3

�. 14! G
3

G

0 I O
I

o I z

�.15! E m
3

g I�. 16! C
-3

The subscript 3 just indicates that the equations for each of the

three variables have been assembled into one system, where



Applying the Euler method to �.12! results in

M  X -X!+At {G +R +C } X At P

To investigate linear stability, we assume

and substitute �.19! into the homogeneous form of �.18! leading to

gM X -N X +ht{G +E +C}X 03 n 3 «n «3 «3 «3 «n
�. 20!

or

X {M � gt {G + K + C } ] X

� T
where X is the complex con!ugate and transpose of X

n -n'

is symmetric, positive real we have

M3 X m3>0
T

n 3 n
�.22!

Similarly, we may write

X G X ~ i g
n 3 h

�. 23!

l12

�.18!

�.21!

PII

p
«g

X ~ !X
n+1 n

X M X
n 3 n

i= ~e 8 cP.

Since M3



X E X = e3>0, e3ciRXR!
-Q -3 -n 3�

�.24!

- T
X C3 X ic3 ~ c3 c R�.25!

To obtain these results, we have also used the fact that the

inner product  X, A X! is real when A is symmetric, and purely

imaginary when A is purely skew-symmetric, i.e.

skew-a~try <-> ai~ � a~i 9 i,3�.26!

With these definitions, �.21! is written

m3 Ate 3 gt i  g3+c3!
� ' 27!

Xn spite of the simplicity of the Euler method, a closer discussion

of Equation �.27! is illustrative . First neglect eddy viscosity

e c 0 . The magnitude of the amplification
3 3

and coriolis, i.e.

factor X is then

�.28!

�. 29! a gt
cr

g

hs is the grid spacing, assumed equal in x and y; H is the

ll3

making the scheme unconditionally unstable! This result is somewhat

surprising because the analogous approach for finite difference approx-

imations of the hyperbolic wave equation, the Lax-Mendroff method![47!,

leads to conditional stability governed by the famous Courant-

l'riedrichs-Levy condition � spatial directions!:



water depth, and gt is a critical time step often used as a
cr

reference.

A closer look at the Lax-Wendroff scheme reveals that the con-

ditional stability is achieved by making the spatial differences of

second order accuracy. With the first order accurate scheme exactly the

same unconditional instability ia found. This simple example serves

as an illustration of the difference between PD and FE methods.

With FD, the possibility of devising combinations of time and space

differences to achieve better stability properties is very real.

Although similar strategies for FE cannot be excluded, it is much

more difficult to perceive. At least at the present stage, the spatial

and temporal discretization are uncoupled.

Our experience confirms the instability predicted by Equation

�.28! which may be written

0  gt!;bt "large"
�.30!

1 + 0  h,t !~At "small"

showing that the exponential growth, causing instability, indicated

by ~>! 1 + 0  P,t! [ 6Q] becomes very slow as ~t is made small.

Thus we found the scheme �.18! marginally stable for the problem

of a wave propagating into a rectangular prismatic channel, when

gt   � <t . The unconditional instability of the Euler scheme
1

� 20 cr'

applied to the finite element equations of the wave problem is a con-

sequence of the special structure of these equations. The FKM as a

rule leads to implicit solutions for transient problems, a cost paid

for better spatial resolution and one of the main objections one

3.14



t
n+1

t
ll+1

t
n+l

�.31! ~ dt + y dt ~ f,dt
dt

t
n n n

Each term is integrated from time t to t t + ~t by re-
n n+1 n

placing the integrand with its mean value in the interval:

+z
n+1 n 2 n+1 n+1 n

�. 32!

or

�+ � At! y - � � � At! y At �  f + f !1 1 1
2 Il+~ 2 n 2 n+1 n�.»!

The truncation error Is

�. 34!

0  h !

Note that �.32! is a finite difference approximation to Equation

�.1! at time t 1; but we need not use the variables at this time.
2

The scheme is unconditionally stable since the substitution of �.6!

into �.33! lead.s to
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might have against this method.

If eddy viscosity is included, a stabilizing effect is observed

as long as gt e   2 m and finally the effect of coriolis is unpre-
3

dictabie, but probably negligible because c is proportional to the

-1
small coriolis parameter f  - 10 sec !.

On account of its poor stability feature the Euler scheme is

discarded. The next technique considered is the trapezoidal rule.

Its application to our example �.1! Is first demonstrated:



�. 35!
1+ � ht

1

2

Using the trapezoidal rule on �.12! yields

N3  X � I ! + � ht   G + E + C !  X + X !1�. 36!

>bt  P +P !
n+1 n

or

 M + � ht  G + E +C !! X ~  M � � 6t  G + K + C !!X1�. 37!

+ � Pt  P + P !
1

n+1 n

The linear stability analysis shows

�.38!

1 1
3 2 3 2 ~t  c3 g3!

1
m3+ � at e3+ i 2 ht   3+ g3!1

Por e ~ c ~ 0
3 3

1m3 i 2 Alt g3
�. 39!

m+i2htg1

and thus the scheme ie said to be unconditionally stable. Adding any

amount of eddy viscosity e acts as damping, making I ~ ~ < 1. The

trapezoidal rule seems ideally suited for our problem, it is linearly
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which shove that ~ A. I < 1 for ht > 0.

1
m3 2 ht  ig3+ e3+ ic3!

1

1m3+ i 2 alt g3

m-i � ht g1

2 3



Ul

0

U~ ~ 0 for !<i
i

L~ 0 for g>i
i

Figure 6-1. Structure of lover and upper triangular matrices.

prohibitive and we therefore also discard this method; but note that

it has been used successfully for the same problem by Partridge and

Brebbia [56].

The ma!or improvement has to come from a reduction in the

number of unknowns solved simultaneously. To achieve this we recall

equations �.34! and �.3S!

� 40! Yl> +G Q PH
t
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stable, sufficiently accurate,and simple to program. However, in the

shown form the coefficient matrix, Equation �.37!, is unsymmetric and

has the banded dimension 6 ' NBAND x 3  h2tNP-1!. NBAND is the size

of the band of non-zero elements in M, over and including the dia-

gonal.  Since Ml is symmetric that is all we need to store for it.!

The largeness of the matrix is due to the fact that all variables are

solved for simultaneously and require a great deal of storage in the

computer. Because of the large bandwidth it is also time consuming to

solve. For larger problems NMNP > 100, these requirements become



�.41! M Q � G rl+EQ+CQ P
T

2,t -Q

Again using the trapezoidal rule we may formally write

�.42! Mlrl +1 lrl 2 H H 2 Q +1
n+ n

n

In order to solve �.42! and �.43! independently, we employ an

iteration technique and write

i+r

�.44! M rl - M rl + �  P � GQ ! + �  P - G 9� !ht ht i i
-1-n+1 -1 n 2 -H � n 2 -H - +1

n n+1

i+i

Q M Q + �  P +Go +  B+C!g!

i+iht   i T ~i
%+1

�. 45!

The strategy is to use a straight Euler integration

o no po
-n+1' -"n+1' -H

n+1

obtain rl 1 and
-n+1

and P equal to rl, Q , g , P and P to
0

n+1 n n
Q'+1. These first estimates are used to improve the
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force terms on the right hand sides, the system is solved again and so

on until the difference of successive iterates is less thar, a speci-

fied tolerance. In practice,�.44! is solved first and then �.45!,

using the updated rl , then returning to �.44!, etc. By this
n+1

approach we have achieved splitting the large matrix into two smaller one~

which furthermore are symmetric, The required storage is NBAND ' %91P +

2NBAND'2NMNP 5NBAND ~ NMNP as opposed to the previous 18 NBAND'NMNP.



The solution of a system of the form

�. 46!

where M is an arbitrary non-singular matrix, can be obtained by either

inverting M by an elimination technique or by an iteration method.

When M is banded and constant while many solutions for different Y's

are desired, the most effective method is to factorize M into a lower

and upper triangular form [2>].

�.47! M ~ L'U

When M is symmetric~ �.47! further simplifes to

M U U�.48!

Figure 6.1 demonstrates the form of L and U. The unknown X is

then simply found by two successive substitutions:

�. 49! L Z R Y

�. 50! U X ~ Z
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Banding is preserved in L and U, so the solution proceeds

very efficiently and accurately once M is decomposed. As the number

of operations  multiplications and divisions! is approximately two

times the number of non-zero elements in L or U, we can allow an

average of 2-3 iterations before this scheme, �.44!- �.45!, require

the same amount of computation as �.37!. Besides the time integration



M X � At  G +K +C! X1 i
3 n+I 2 -3 n+1

�.51!

Assuming a complex amplification factor~A> we have

i+g

X ~ 4 X
n+1 n+1

�. 52!

and hence

N AX � At  G +E +C! XI i
3 n+1 2 -3 -3 -3 n+1

�. 53!

1 3 3 3� At
2 m3

�.54!

Since convergence requires ~A I   1 and A 0 At!, the time step

cannot be arbitrary. How large At may be is not known in general; but

our experience indicates that the C-F-L At cannot be exceeded.
cr

At this stage, a more accurate, TE 0 At ! q iterative predic-

tor-corrector method was developed in the search for a stabler scheme.

The predictor is a simple parabolic extrapolation

�.55! X = X -3X +3X
n+l -n-2 -n-l - n

and as the corrector we used:
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stability phenomenon which we have investigated, we must also ascertain

that the iteration process converges. For simplicity we assume that

�.44! and �.45! are iterated simultaneously so that we can use the

symbolism of Equation �.37!. Neglecting forcing terms, the iteration

is characterized by



X X + �X +SX � X !
n+1 n 12 n+1 -n -n-1

�. 56!

K X�. 57! P � G X-E X � C X ~ P
3 3 -3 3 -4

The 4th order R-K method with the smallest error bound [ 58] is then

written.

+1 X + 0.17476028 kl � 0.55148053 k2
-n+1 -n

+ 1.20553547 k3 + 0.17118478 k4

�.58!

where

121

Again, it is necessary to iterate because X appears on the
n+1

right hand side and, unfortunately, with the same poor results as be-

fore. Since �.55! � �.56! is a multilevel method, involving more

than two time steps~ it must be started with some other means.

Among the self-starting schemes, the Runge-Kutta methods are

probably best known. We shall here discuss the fourth-order methods>

since second-order methods are very similar to combinations of the

already mentioned trapezoidal rule and Euler method. The R-K methods

are known to be relatively accurate  often more accurate than same

order predictor-correctors!, however, far systems of equations, the

algebra involved in an error analysis is untractable. This is a ma!or

disadvantage of these methods.

The procedure is best described on the basis of Equation

�.12!, which we modify slightly:



�. 59! M k At P  t,X! n' n

�. 60! M3 k~ A't P4  't + 0 ~ 4 At X + 0 4 kl!
4 n n

�. 61! 3 k3 . At P4  t + 0.45573726 At, X + 0.29697760 kl
n n

+ 0. 15875966 k2!

�.62! M3 k4 At P4  t + At, X + 0.21810038 kl � 3.05096470 k2

+ 3 ~ 83286432 k3!
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Since only known information is used on the right hand sides of �.59!

�.62! we can solve for q and q independently, saving storage and

computation. The lack of error analysis makes it impossible to give

an apriori convergence estimate on At. The R-K methods are charac-

terized by being stable for sufficiently small At; but the admissible

range must be established by trial and error. Our implementation of

the 4'th order R-K-method �.58!-�.62! has been stable for At ap-

proximately equal to At and it is by far the most accurate of all
cr

schemes tried. Although this method proved itself very useful in the

initial stages of the circulation model development, there is a strong

ob!ection against using it for larger problems. The weak point is the

need to solve the whole system of equations plus compute new right

hand sides 4 times per advance in time, which makes the method rather

slow and expensive.

Anticipating both large and long duration problems  especially

looking forward to a two layer model!, the search for a faster method

went on until we finally came up with the SPI..IT-TIME methrd. The idea



is not really new, but inspired by the time staggered finite diffe-

rence methods mentioned in Chapter 2. It is however the first time

such a method is applied to the finite element equations for hydro-

dynamic circulation.

Reviewing equatiors �.40! and �.4l! ~ we may isolate the

inertial and gravitational terms as the more significant, i.e. we

expect inertia and gravity to be the main forces. Doing this, we may

formally write

�.63!
l,t H

M rj +GQ ~ P

M Q -G q P � E -CQ.
T

-2 -.t - - -Q -Q
�. 64!

we define q at times t l , t 1 ... and Q at times

t , t ... and approximate �.63! and �.64! byn ' n+1

Ml q 1-q 1!+htGQ =QtP  t,q 1, Q!�.65!

2 Q ~1- Q ! � h q~l At   ~,q ~l, Q !T

n 2 n~2 n 2 n
�.66!

� ht  < + C! Q
n

Assuming a given initial. condition q � 1 , Q , the solution is exe-
2

cuted by first solving �,65! and then �.66! .
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If we for a moment ignore the right hand sides, we observe that �.63!

and �.64! lend themselves to central differencing in time  trapezoidal

rule! if q and Q are staggered in time. To make this become clear,



To study stability, we introduce

�.67!
e

-n

n+1

0 i G G
I

I -Y
�.68!

0

allowing us to write,  as usual ignoring P and P !:
-H

�69! M X 1 ~ M X -gtG X
3 n~ 3 n 4 n

� 70! M3X ~ M X 1+At G4X 1 � At  E+C ! X 13 +1 3 +- 4 n~ 3 3 -n~

Since M is regular, it has an inverse, so X 1 can be solved for:

�.71! X 1 ~  I � At M G ! X
F2 3 4 n

Substituting �. 71! in �. 70! yields

� 72! M X =  M +At G! Iht M G!X- Qt E+C ! ~
3 n+1 3 .4 n

 I - gt M G ! X

where I is the unit matrix.
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G4

1-n-�
2

Q�

0

I

X ~l
"2

1-n+-
2

X
-n+1

Il 1
-n~



Multiplying by M gives

{6.73! X {I+At M G !  I-At M G !X � At M {E + C ! ~
n+l 3 4 . 3 4 n -3 -3 -3

 ! -At M3 G4! X

Noting the special structure of G, Equation �.68!, and using the

matrix rule

l -A

�.74!

0 ! 0 !

we may write

�.75!  ! � At M3 G ! X ~  I � At M G !K � At I-At M G !M

 E+C! ! � At M G! X

The last term can be reduced; thus

O I 0 -At M G

0 I E+C
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�.76!  E + C !  ! � At M G !

I
0 I z

I



i
0 i 0

 E +C!
3 3t

0 i E+c

Finally» mul,tiplying by M results in

 N � gt G !X  N � gt G !X - gt Z - 5t G 8 ! ~�. 77!

 E3+ C3! X

To find the amplification factor, Equation �.19! is substituted in

�.77! which is multiplied by X and reorganized to giveT

n

X M3X - htX G~X - AtX  E3+C !X +At X GP3  E3+C3!XI13 n n-4 n ~n -3 ~3 ~n ~Il 4~3 ~ 3 -3 -n
�. 78! !,

X M X �  !I t X G X
n 3 n n 4 n

m � ft g4+ ig>!- 5t e3- i5t c3
+o  ht !

m3- b,t  g4- ig5!

We introduced the notation

-T
X G X ~ g + ig

n 4 n
�. 79! g4» ggK R

and

T
�.8G! X G X  K G X ! = » � �

n 4 n n 4 n 4 5
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where g4, g are arbitrary real numbers. Neglecting e , c for the

moment yields



m3 Atg4 ~tg5     3 Atg4!-iAtg I    m3-Atg4!+ Atg5�.81!  ~~' - 3 4
m3-Atg4+iAt g  m3 Atg4! +iAtg    m -Atg4!- iAtg5

5

hence the split time scheme �.65!, �.66! is linearly unconditionally

etabIe as an initial value problem and without eddy viscosity or coriolis

terms.  Lan't analysis beautiful?! Unfortunately, we can not show that

adding eddy viscosity decreases   A ~ or what influence coriolis has ~

however, our experience with the split time scheme indicates that rea-

sonable values of Ei has a small stabilizing effect. On the other hand

we have not found the split time scheme unconditionally stable in prac-

tice. Tn fact, the maximum time step we have achieved is approximately

1.5 At ~ We have eo far not resolved why instability sets in; butcr'

have nevertheless implemented the split-time scheme as the standard time

integration scheme in our circulation. Of the methods discussed>this

is the most efficient, comparing favorably to explicit finite difference

methods, but still cannot match the time steps possible in implicit fi-

nite difference methods. More research could fruitfully be invested

in developing an even better time integration method for the finite

element equations, and we suggest such a pro!ect for future work.



CHAPTER 7

VER IF ICAT ION

In this chapter, several sfmple problems are solved and com-

pared to the exact analytical solution. The purposes of undertaking

such a study are: 1. insure that the model fs constructed correctly;

2. investigate the accuracy and stability of the model; and 3. evaluate

the relative importance of various terms.

The first example is the problem of a standing wave in a

rectangular prfsmatic channel shown in Figure 7-1. We consider only

the lfnearized, one-dimensional problem governed by the wave equation

B~ u q 3iu

Qx

�.1!

TT 2

Qtz 9xz

cz gh�.3!

The channel of length L is closed at one end x = L, and at

the open end x 0 the water level is forced up and down according to

�.4! q a ain't0

27r

f T
�. 5!
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where a fs the amplitude, and v. Is the angular velocity of the forced

oscillation with period T.
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9

4~rfX
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The boundary condition at the solid boundary is

�.6! u 0 x > L

or equivalently

�. 7! n ,x

The standing wave solution is easily found by separating the variables.

The result is  see for example [ ]!-

a ~gh L

-' L sin  ~f   + -l!! cos zf t
h cos Mf ~g

~gh

�. 8!

xcos  z   � -l! ! sin <of t
~gh

�. 9!
Lcos Wf

~gh

l30

For the test, the values of the parameters are listed in

Table 7-1.

A finite element grid symmetric about the channel centerline

is constructed as shown in Figure 7-2. The symmetry provides a first

check on the results which, if correct, must also be symmetric.

The relatively small amplitude   � = 0.025! is chosen so
a

h

that non-linear effects are negligible. At the 3 walls, the normal dis-

charge is prescribed zero and in the 90' corners both discharge components

are required to vanish. At the open endy the surface elevation is for-

ced according to �.4! while the discharge is left free. The problem

was solved with the split time method, starting from an initial condition



TABLE 7.-1 Standing Wave in Channel

derived from �.8! and �.9! for t 4 ~ The computed surfaceT

elevatiom at x L are plotted together with the analytical solution

on Figure 7-3. A similar time history of the velocity at x 0 is

shown in Figure 7-4. One whole tidal period was computed with ht 5 sec.

showing the right tendencies, but not agreeing too well quantitatively

with the exact solution. To resolve whether the error was due to the

time integration, the time step was halved and the computations repeated.

As figures 7-3 and 7-4 show, the two solutions come out practically

identical. The error is therefore attributed to either the spatial dis-
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cretization or possibly excitation of one of the eigenmodes of the

channel. Recalling the expression for the spatial error {5,54!, this

can be decreased by either making the grid smaller or the data f

smoother. We choose the latter and increase the period of the forcing

by a factor of 3, thus T 600 sec. and the computations are re-

peated with L't 5 sec. As tables 7-2 and 7-3 show the ratio

max error
is now less than 1% over a period of more than 2T.max value

TABLE 7-2: Comparison of Computed Surface Elevation with
the Exact Solution for T 600 sec ~

TABLE 7-3: Comparison of Computed Velocities with the
Exact Solution for T = 600 sec.
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ln t.est runs of this problem using different integrot ion tech-

niques, the stability was preserved up to the "t values given in

Table 7-4.

TABLE 7-4: Critical Time Steps for Integration Methods
Applied to Simple Channel

Of. all the schemes, the 4'th order Runge-Kutta method is the most

accurate. The Euler method is useless for any longer term integration

and the Predictor-Corrector method showed rather poor accuracy, pre-

sumably due ta the iteration procedure. The split time scheme ie as

the example showed sufficiently accurate and efficient. Hence this

method ts chosen for further applications. Should an occasion arise

where better accuracy is needed, the Runge-Kutta scheme is easily re-

vived.

The second example consists of modeling the propagation of a wave

into the channel shown in Figure 7-1 and 7-2, with the water initially

at rest. Again only the linearized problem governed by Equation � ' 2!

is considered with the boundary conditions �.7! and
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�. 10! r, a � � cos tot!! at x 0

howevEr, now under the frit ial �crc'it for

�s ll! u,q 0 for all x at t ~ 0

The exact solution to the problem is easily found since any solution to

the wave equation �.2! can be written

�. 12! f  x-ct!+g  x+ct!

Condition {7.7! implies,  g =  x-ct!> g  x+ct!!

�. 13! f  L- ct! + g  L+ ct! 0

which is fntegrated

1 I df 1 I ds! � dg + � ! Ch. ~ constantJ dg c J dg�. 14!

or

-f  L � ct! + g  L + ct! constant�. 15!

From the initial condition, the constant is determined to be zero,

leaving

f  L � ct! = g  L + ct!�. 16!

a sing t � � !
X

f  x-ct!

x 2L+xa sin u t � � ! ! � f �L-x-ct!
C c

136

The complete solution is now written

X
t

c

2L+x
t<

c



  0
2L-x

  2L � xf �L � x � ct! ~ t
C

�. l8! g x+ cti=

combined with �. 11!.

error of less than 1X showing that better accuracy can be obtained if

desired.

All examples so far have been for horizontal bottom. To verify

the variable depth feature of the model, the standing wave in a channel

with sloping bottom was solved for. The longitudinal section af the

channel is shown in Figure 7-5.

The depth is given by

The governing equations for the linearized problems are
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The computed and exact solutions at dif ferent times are again

compared in Table 7-5. The split time scheme was used and Table 7-6

gives the values of the parameters. Some remarks are attached to the

results shown in Table 7-5. Except for small times, only three signifi-

cant digits are shown to avoid confusion by round off errors. The trend

of the results agree well and the average error is less than 5X over a

period of 2T 1200 sec. The �-coszt! forcing function was chosen to

make the start-up as smooth as possible since the value of this function

and its derivative vanishes at t ~ Q The Runge-Kutta scheme was applied

to the same problem with a 5t = 2.5 sec, yielding results with an average





�.21!

ll [la!

0.001

t ime

-0. 001

Figure 7-7. Surface elevation at x x + L for sloping channel.
0

asing t at x x +L
0

rl 0 at x x
~ X 0

H.e solution to this prob3.en can be found in [36] ~ Assueing

rl Im f< x!e F�. 24!
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�. 22!

�.23!

3 a

at Bx

The boundary conditions are again, as for the first example, given



X[m]TIME computed
 m!

TIME computed
[m]

exact exact
[m! lmj

T

4
5T

4

T

2 3T

2

3T 4 7T

4

2T

TABLE 7-5; Comparison of Surface Elevations for a
Propagation Wave

TABLE 7-6: Values of Parameters for

Propagating Wave Example

140

0.1

0.10088

0.10214

0.10286
0.10338

0.2

0.2008

0.2010
0.2012

0.2015

0.1

0. 0981

0.0965

0.0955

0.0952

0.0
-0.00291

-0.00441

-0.00533

-0.00677

0.1

0.10089

0.10177

0.10257
0.10293

0.2

0. 201

0. 202
O. 2022

0.2022

0.1

0. 097

0.0958
0.0947

0.0943

0.0
-0.00311

-0.00556
-0.00726

-0.00793

0

50

100

150

200

0

50
100

150

200

50

100

150

200

0

50

100

150

200

0.1

O. 102

0.104

0 ' 105

0.105

0.2

0.204

0.206

0.208

0.208

0.1

0.0981

0.0968

0.0959

0.0959

0.1

-0. 00444

-0.00825

-0.0106

-0.0115

0.1

0.101

0.103
0.104

0.104

0.2

0. 205

O. 208

O. 211
O. 211

0.1

O. 1003

0.1007

0.1010

0.1012

0.1

-0.00419

-0.00761

-0.00981
-0.0105



we find the equation governing q x!:

�.25! K g + K  ! + K g ~ 0
rKK K

which ia Sessels equation of zeroeth order. The solution for q is

hence written:

�.26! q ~ - �  Y  ~P � ! J �~ w � ! J �~ v � ! ~X

D 1 F ag o F ag 1 P ug

Y �g�l � ! } sin ~t

where

�. 27! D Y �y ! J �< < � ! � Y � !} / � ! J   !

The velocity is easily found from Equation �.21!:
0

0. 05

0.0

0 50 100 150 200 250 300 350 400 450 [sec]

Figure 7-8. Surface elevation at x~L vs. time for wind example.
The arrows indicate the exact times  eqs. �.41! and
�.42!! of max and min occurences.

�.28! u � l~  J �w 8 � ! Y  ~P � !- Y � u W !J �ro J � !}'
D xa 1 cag 1 ag 1 ag 1 ug

CO8  L! t
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TABLE 7-7 : Parameter Values for Sloping Channel

+ h � = 0
a au
at ax

�-29!

ts
au an x+ g � a
at. ax ph

�-30!
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The finite element grid applied is shown in Figure 7-5. The split time

scheme was used and the values of the test parameters are listed in

Table 7-7. Figure 7-7 shows the excellent agreement of the computed

with the exact surface elevations at x x + L. Elevations and velo-
0

cities at other x compare equally well although not shown here.

The channel examples were all repeated with only the direc-

tion of the x and y axis changed. This gives us reasonable assurance

that both x and y components have been programmed correctly.

In the last one-dimensional test example, a constant uni-

form wind stress is applied to the channel in Figures 7-1 and 7-2. The

governing equations are



wi th the b oundary conditions

�. 31! q 0 x ~ 0

�. 32! u ~ 0 x ~ L

and the initial condition

�.33! n,u 0 Vx at t ~ 0

To solve this system we introduce

s
TX

�.34! v ~ rI - � x
pgh

whereby Equation �. 29! and �. 30! change to

+ h �. 03K Bu

at Bx
�. 35!

+ g a 0Bu BK
8't 3x

�. 36!

T s
X

K ~ x u0,0<x<L, t 0�. 37!

After some trivial computations, the complete solution may be written

u = I a cos    � + p! � jsin   � + p! � t!1 mx 1 zc
p 2 1. 2 L

paP
�. 38!

a  R

rl � � ! a sin    � + p! � !cos   � + p! � t!x h 1 mx 1 zc

pgh c p 2 1 2 Lpe0
�.39!

where
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The boundary conditions remain the same for < but the initial condi-

tion now becomes



B
cL

a  -1! p x j.

p pgh m' �+2>!'
�. 40!

The series are rather slowly convergent  a 0  ~ !!, however, atl

P P

x L the maximum and minimum surface displacements are easily found to-

gether with their time of occurrence.

m 1,3,5. ~ .

�.42! 0 m 0,2,4, ~ ~ ~

The model was run with the split time integration scheme and

the values of the test parameters are listed in Table 7-8.

TABLE 7-8: Parameter Values for Wind on Channel

l44

s

X

max p gh at t m ~   � !2L

c

at t m  � !2L

c



0 < x < 78000, y 37000� ' 43! q ~ 1.31 �-coast!

where g 2m/T and T is 12.4 hours ~ 44640 sec. As initial con-

dition, the water is assumed. at rest and rl 0 everywhere for t < 0.

The Runge-Kutta method was used for the time integration with Qt 200

sec. The smallest grid size is approximately SOOO e and the grid con-

sists of 71 elements with 48 nodes. It was found that after the

first period of T/2 the surface elevations and flow velocities were

practically periodic indicating convergence on the standing wave so-
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The computed results for q at x = L are plotted in Figure

7-8, where also the times of equatio~s �.41! and �.42! have been in-

dicated. Very good agreement between amplitudes and phases is found.

Finally, a two-dimensional test example was carried out.

The detailed description of both numerical and analytical solution is

contained in the report f]2]. Figure 7-9 shows the geometry of the

problem which is an approximation of the Massachusetts Bay. The bay

is bounded by land on three sides, but has a wide opening on the east

side towards the Atlantic Ocean. The analytical solution is governed

by the wave equation, assumes a constant depth  h = 36.6 m! and a

harmonic time dependence  standing wave!. The amplitudes of surface

elevations and velocities are shown in Figure 7-10. The finite ele-

ment circulation model ie adopted to the same problem. Thus non-linear

terms are dropped from the formulation. On solid boundaries, the normal

velocity ie set to zero and at the opening, the surface is forced as

a sinusoid



lution. This rather fast convergence rate is due to the reasonable

initial condition and to the fact that the wave propagation velocity

Figure 1-9. Rectangular approximation of Massachusetts
Bay. Sketch of geometry.

c ~g l8.95 m/sec�.44!
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is relatively large in this case. Figures 7 ll and 7-12 show the

computed high tide and maximum ebb velocities. Comparing with Figure

7-10, good agreement is found between surface contours, tidal ranges,

velocity magnitudes and directions.

The discussed test examples provide reasonable assurance

that the model is constructed and programmed correctly. They also

constitute a basis on which modifications to this model or other

models can be compared.
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CHAPTER 8

8. 1 APPLICATIONS

Several case studies are discussed in this chapter, with the

emphasis placed on solution strategies rather than results. However,

whenever possible, comparison of the computed flows against actual

field data is attempted.

The first example is taken from Massachusetts Bay shown on

Figure 8-3.. The oh/ective is to obtain an estimate of the circulation

pattern. Laying out a good grid is essential for an efficient solution.

This process requires skill on behalf of the solver, which can be gained

only through experience. We shall give some guidelines which will make

it easier for a beginner to tackle a new problem, The mistakes we have

made and their corrections are also discussed.

8.2 THE FINITE ELEtKNT GRID.

Before starting the subdivision of the domain into elements,

the outer boundary must be established. It is wize to begin any new

problem with the crudest approximation possible and then later make re-

finements as they become necessary.

Land boundaries do not cause many problems especia]ly when

too much detail is avoided initially. For ocean boundaries, the situa-

tion is quite different. The items that must come into consideration

when choosing where to create this "artificial" boundary, which really

is dictated by the limited size of computers, are:

a. Where is data available for boundary conditions
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Figure 8-1. Bathymetric map of Massachusetts Bay.
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b. Since some inaccuracies are to be expected in the data,

the boundary should be reasonably far away from any area

of interest;

c. Zf wind is an essential factor and its effect on the

boundary conditions are unknown, it is better to establish

the boundary at greater depths.

Usually a compromise between a, b and c is unavoidable.

The solution accuracy would thus benefit by moving the ocean boundary

on Figure 8-2 further out to deeper water, but unfortunately no tidal

data is available there.

After having determined the perimeter, the subdivision takes

place. As a general rule, the best results are obtained if the grid is

made to resemble a flow net. Good engineering Judgement is important

and the following factors must be considered.

d. Depth variations are modeled by placing nodes at the

lowest and highest points of the bottom profile.

e. The grid must be finer where gradients are greater

 flow net concept!.

f. Grid dimensions should change gradually, and fox accuracy

the elements must not degenerate. For triangular ele-

ments ~ this means as previously mentioned that no apex

angle should approach zero and preferably they should

be almost equilateral.

g. Empossibilities should be avoided. This point will be

demonstrated in examples.
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Again a compromise must be found between accuracy and. computational

ef f iciency. Tn our grid of Mass Bay  Figure 8. 2!, we have thus nat

attempted excessive detail in describing the land boundaries. However,

in three areas, a special interest is identified and the grid therefore

made finer. These are: l. a proposed  but now abandoned! sand and

gravel dredge site approximately 13 km east of the entrance to Boston

Harbor. 2. the coast around the Pilgrim nuclear power plant site at

Rocky Point, and 3. the entrance of Cape Cod Canal into the bay.

The coastline and bottom topography are determined from the

USCGS  U.S. Coast and Geodetic Survey! bathymetric chart of the area.

The only ocean boundary information available is the pre-

dicted tide from the tide tables [ 73J. The closest stations are

Gloucester, Rockport, Race Point, and S K. of Cape Cod Lighthouse ~

Unfortunately, the predictions for Race Point and Cape Cod are based

on very old and limited data. Only mean tidal ranges and times af

high and low tides are listed. Although the distance between the two

stations is only about 19006 m, there is a reported difference in tidal

range of 0.43 m �.4 ft!. Considering the many uncertainties it is de-

cided to use an average. tide as boundary condition and furthermore

assume: l. the semidiurnal  N2! tide accounts for all the variatian,

2. straight interpolation of tidal range between Race Point and Cape

Cod Lighthouse, and between the southern and northern extremes of the

boundary is valid, 3. mean low water is a horizontal surface at the

ocean boundary, and finally 4. the tide is in phase all along the acean

boundary. These simplifying assumptions are made necessary by the lack

of data. Their influence an the results can be investigated by doing
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sensitivity studies with the model.

The model was applied to the grid shown in Figure 8-2 with

the ocean boundary condition

 8.2.1! q ~ a � � cos ~it!

where

 8.2.2! 4!
2lT

T

and T 45000 sec. The amplitude varied linearly from 1.27 m at

Cape Cod to 1.31 m at Cape Ann. Figure 8-3 and 8-4 show typical pic-

tures of computed sea surface levels and velocities. Due to shoaling

effects there is a significant change in tidal range and phase from

point to point. A fine tuning of the model is possible by changing the

bottom friction or eddy viscosity coefficients.

Increasing the bottom friction tends to magnify the phase lag

in the direction of propagation. Tidal ranges are fairly insensitive

to changes in Cf, however significant changes in the currents are no-

ticeable. Eddy viscosity has little or no effect on tidal phases. or

ranges but affects currents. Short waves are damped and therefore small

amounts of eddy viscosity E . help keep the numerically generated short
ij

wave noise down. The magnitude of E j can be estimated in the following

way. Assume that the internal stress term is typically a fraction > a >

of the linear pressure term:

~ pu2 8.2.3! a g ~ ~ E

Introducing typical scales as before
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U2 32a ~ g~ ~~E
x 3x xx %, 3x~

 8. 2. 4!

where the derivatives now are order of 1 quantities, gives

E xx 0 8.2.5!

Reasonable a's may range from O.l � 0.01. Let for example rl 2 m;

u ~ 0.2 m/sec., x 5000 m and a 0.02, then

 8.2.6! E w 0.02 ' 10 ' 5000 ~ 10000 m~/sec.2
xx ' ~
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The validity of a crude estimate like  8.2.5! is supported by model

tests. When a is made significantly smaller than 0.01, the results

are insensitive to internal stresses. We have so far not had sufficient

data to attempt any ad!usting of E . Our use of internal stress terms

has been limited to controlling short wave noise, usually with a   0,02.

In the grid shown in Figure 8-2, the change in grid size around the

NQMFS dredge site is thus too drastic causing entrapment of short wave

energy and consequent instability. By including some internal stress

in this local area, the problem was eliminated.

The computed tidal range at Boston Haronu= is sl' g'. t y ,'a"g-:-

t!'.an the predicted mean tidal range of 2.77 m  9.1 ft!. Since this

is a more dependable observation, the boundary conditions were scaled

down accordingly. Thus, the amplitude was prescribed as 1.25 m at

Cape Cod and 1.21 m at Cape Ann with a linear variation in between.

The bottom friction coefficient ranged from 0.01 � 0.02

according to the depth. The current fields at subsequent stages



of the tide are shown in Figures 8-5 to 8-10,and Figure 8-11 is a plot

of surface contours at high tide.

Model results have been compared with actual current meter

measurements,and sensit-'vity with respect to the ocean boundary condi-

tion was investigated by Christodoulou [ 8 ]. Figure 8-12 shows a com-

parison of model results with field current measurements at the foul

area location shown in Figure 8-2. The agreement is quite good>alrthough

no attempts were made specifically to fit the data~and is largely due to

the fact that the current measurements were made during winter. In

this season, the water column is homogeneous and a vertically integrated

model is a good approximation.

Since the ocean boundary condition is rather uncertain, it

is useful to investigate the sensitivity of model results to reasonable

variations in prescribed values. Figure 8-13 shows the results of such

an analysis. Changing the tidal ranges along the ocean boundary has

a marked effect on the magnitude and direction of the currents and

the net drift. The figure also demonstrates how the model results can

be fitted to real data by ad]usting the "tilt" at the boundary.

Changing the tidal phase or the reference level along the boundary has

similar effects.

To study the influence of wind, the Mass Say model was exer-
s

cised again with a constant wind stress -0.0000286 m /sec appliedTv 2 2

Pp

everywhere on the surface. This corresponds to a situation with north

wind at approximately 10 knots ~ 5 m/sec. The real problem with

modeling wind is the open ocean boundary. It is usually not known how
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wind effects the sea surface, however, such effects are decreased as

the depth increases. his is the reasoning behind point c in the be=

ginning of this chapter. Although we could not satisfy this everywhere,

the assumption was made that the wind had no effect on the surface level

at the ocean boundary, which therefore was forced according to  8.2.1!

as before. Figure 8-14 shows a plot of the velocities after 120000

sec that may be compared with Figure 8-9, The wind caused little

change, at most 2 cm/sec in the velocities. Sufficient field data

for verification of wind driven circulation is not available. In

general, good prediction of mass transport  discharge! is expected.

However, because of the slow boundary layer development from the sur-

face, the velocities may not be realistic. The vertically integrated

formulation cannot describe wind driven circulation, other than dischar-

ges, well.

For a detailed report on the application of the model to

hurricane surges, reference is made to Pagenkopf and Pearce [53].

During the work on the Nasa Bay grid, some ill behaved ele-

ment arrangements were discovered. A typical example of an intrin-

sically bad grid configuration is shown in Figure 8-15a. On a flooding

tide, the filling of elements 1 and 4 must essentially be achieved by

the tangential flow at point A; but this will always drain one element

while filling the other, an "impossible" situation as referred to in

guideline g. A better layout is shown in Figure 8-15b. However, to

obtain accurate results it is necessary to increase the number of nodes

and elements.
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Figure 8-5. Computed tidal currents ia Mass Bay. t-90000 sec
low tide.
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Figure 8-6. Computed. tidal currents in Mass Bay. t~97SOO sec=
T/6 af ter low tide.
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Figure 8-7. Computed tidal currents in Mass Bay. t 105000 sec=
T/3 af ter low tide.
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Figure 8,8. Computed tidal currents in Mass Bay. t 112500 sec=
T/2 after low tide high tide.
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20 40 c

."igure 8-9. Computed tidal currents ia Mass Bay. t 120000 sec
T/6 after high tide.
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20 40 cs/sec

Figure 8-10. Computed tidal currents in Mass Bay. t~l27500 sec=
T/6 before low tide.
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FLgurc 8- tf. 5urfoce contours at high ti.de.
 fl2,$00 sec, aCer cole  ~tert.!
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Figure 8-14. Computed tidal currents in Mass Bay, with an imposed
north wind of approximately 10 knots,  ~ /p
-0. 0000286 m /sec ! . t=120000 sec=T/6 aFter high tide.
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Another example is demonstrated in Figure 8-16. Although

the channel shown is capable of transmitting flow in the longitudinal

direction transversal flow is made impossible. Since the grid is un-

symmetric, it will cause the water surface to slope transversally.

This slope can grow in time since it is never equalized by transversal

flow. The channel examples of Chapter 7 also had this fault, which

was overcome by averaging over a cross section. To really avoid this

problem, at least two rows of elements should always be used.

8. 3 INTERNAL SOURCES

In the second case study, the tidal flow and the hypothetical

circulation induced by a once through cooling water system in the West

Passage of the Narragansett Bay is computed. The intent is to estimate

the influence on existing flow patterns of the cooling water intake and

discharge syste~ of a hypothetical nuclear electric generating station

located at Rome Point  see Figure 8-17!.

To determine the undisturbed tidal flow, model boundaries

were created north and south of the site and strip chart recording

tide gauges of the bubbler type were installed to provide boundary con-

ditions. Lack of time and funds were the reasons for using these rather

crude gauges with inherent poor accuracy. After 6 weeks of field

sampling, the data sho~ed large daily variations in tidal ranges and

relative phases. Considering all observations, an average lag time at

Plum Beach referred to Quonset Point was found to be +ii~12 minutes.

The data also show differences in mean wave heights between the gauge
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Figure 8-17. Rome po~t study area.
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locat'o»s. However, compared with the likely error of '.'o cm for the

recorders, these differences are insignificant. Mean wave heights ran-

ged between 104 cm and 111 cm over the area. The recorded maximum and

minimum wave heights were 1.6 m and 0.55 m.

The two open boundaries were iorced as sinusoids according

to  8.2.1! with the southern boundary lagging 12 minutes behind t' he

northern boundary. Figure 8-18 shows the grid and Table 8-1 lists

the parameter values for tidal computations.

TABLE 8-1: Parameter Values for Rome Point Tidal Flow

As usua1., the initial condition was taken to be no motion at t = 0,

and the Runge-Kutta method was used. After less than half a tidal

cycle, the influence of the initial condition had disappeared, as for

Mass Bay. Figures 8-19 to 8-22 show the resulting flow fields at va-

rious stages of the tide. The magnitude of the currents agree well

with current meter data taken by U.S. Coast. and Geodetic Survey. It

must however be emphasized that the results presented are typical

174



The Proposed Locations'=inure 8-18. Finite leE ement Grid Layout. e
k Channel and Di user'ff r Pipe are Indicatedof Inta e

175



ed tidal currents i> gest passage.Fi use 8-19. Computeg

Lpw Tide.

176



Figure 8~20. Cainputed tidal currents in West Passage.
T/4 after low tide.
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'igure 8-21. Computed tidal currents in West Passage.
High tide.
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Figure 8-22 ~ Computed tidal currents in West Passage.
T/4 after high tide.
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average values for a 6 week period and that much daily and seasonal

variation can be anticipated. Thus the current tide table [72! states

that the currents in the area are too random to predict.

The proposed cooling system for the plant would have an

intake channel and a diffuser discharge pipe located as shown in Figure

8-18. The estimated flow rate is 1350 cfs �8.23 m' /sec! which we

assumed was distributed evenly over the length of the diffuser,although

the depth varies somewhat in that area.

At the time of this study, the possibility of prescribing

a non-zero boundary discharge had not been developed. Consequently,

we decided to model the intake as a sink, since a source feature would

have to be implemented anyway to handle the diffuser pipes. To get

a better idea of the plant generated flow, the two open boundaries were

closed and the tidal forcing excluded. In the first run, the intake

was modeled as a point sink and the diffuser as a line source. The

resulting current field showed a marked net flow towards the intake

and total mass was clearly not conserved. At the time, considerable

effort was expended before the problem was resolved as the spatial

truncation error described in Chapter 5. Referrring to Equation

�.54!, the inconsistency is however easily explained. A point sink

is a physical idealization which, in mathematical terms, is expressed

as a delta function, d x,y!. However, h x,y! does not belong to the

admissible function space for which �.54! was derived, assuming the

data to be smooth, i.e. square integrable. From the knowledge that

� x,y!i is infinite, one can therefore not conclude that the error
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is infinite. As a matter of fact, we have here exactly the case where

a node and a discontinuity in the data coincide. The error is hence

not predictable; but intuitively one would expect it to be very large.

Conceptually, the use of 5-function loads is also a bad choice, since

the L2 norm is infinite, it is difficult to assure that the solution

is convergent and unique.

In the first computations, the truncation error was obvious-

ly too large. Acting as false sources it completely obscured the re-

sults and also explains why mass was not conserved. To overcome this

problem, the strategy was changed to spreading the loads over a small

area and the grid was furthermore refined slightly at the intake.

Figure 8-23 shows the equivalent distribution of point sinks used. To

model the plant outflow it was assumed that the dilution of the dif-

fuser flow was proportional to the local water depth. The rate of

volume addition and its spatial distribution is shown in Figure 8-24.

With this loading strategy, mass was conserved and the induced flow

pattern is shown in Figure 8-25, On the basis of this result it was

concluded that the plant generated flows were insignificant compared

to the tidal flow and especially its daily variations  note the dif-

ferent velocity scales!. No attempt was therefore made to run the

model for the combined situation of tidal flow with operating plant.

The flexibility of the finite element grid was particularly useful

in this case. The cooling ~ster generated flow was modeled without con-

sidering buoyancy effects using the Runge-Kutta method at ht 40 sec.

After approximately 600 sec. the solution had essentially reached its
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Figure 8-24. Diffuser Flow Yodeled as Distributed

Volume Source. The Source Strength
is Represented by the Sketched "Roof-
structure".

1.83



Figure 8-25. "Once Through" System. Currents
680 sec. After Start-up
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steady state everywhere, however some small oscillation around the

mean value was noticeable.

we have measurements of the velocities and dischargesinland,

at the entrance of both inlets [44] which may be used for boundary

conditions. At this time, work is still progressing on the project.

Figures 8-27 and 8-28 show the grids in use. The coarse grid covering

the larger area has the primary purpose of establishing boundary con-

ditions for the finer grid which is used to study the circulation in

more detail. The coarse grid have been used to solve the tidal flow

with prescribed discharges at the inlets  Figure 8-29!. The boundary

at the continental shelf is forced as a sinusoid of amplitude 0.9 m.

The two boundaries running from the shelf to land are assumed to be

impermeable smooth walls. The lack of data make this crude approxima-

tion necessary. If the problem is well posed and the boundaries are

far enough away from the area of Interest, the results are hypothesized

185

8. 4 PRESCRIBED DISCHARGES

The last important forcing situation we consider is the

prescribed discharge boundary which could be a river but in this case

is a tidal inlet. The concern Is directed towards the proposed Atlantic

Generating Station, AGS, located on the New Jersey Coast approximately

3 miles out from Beach Haven and Little Egg Inlets, see Figure 8-26.

The tidal flow in the area and the influence of the plant must be de-

termined. The two tidal inlets transmit significant flow and must be

included. However, rather than modeling the inlets which extend far



Figure 8-25. Atlantic generating station, AGS, site.
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Figure 8-27. Coarse grid for circulation study at AGS. The
perimeter of the fine grid is indicated. 187



4 5k
Figure 8-28. Fine grid for circulation study at AGS.
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Figure 8-29. Large scale tida1 circulation at AGS. Computed
currents.

1S9



to be rather insensitive  guidelines b!. At the land boundary, the

normal discharge was prescribed zero except at the location of the

inlets. Here a sinusoidally varying total discharge of approximately

3600 m'/sec was prescribed such that high water slack occurred an

hour after high tide at the shelf. The split time scheme with

t l00 sec. was used.

The fine grid has so far only been used to study flow in-

duced by the actual discharges through the inlets. The sea surface at

ocean boundaries was assumed fixed and the discharges through Little

Egg and Beach Haven inlets were assumed to vary sinusoidally in time

with maximum discharges of 2500 m /sec and 2000 m /sec. Figure 8-30

shows one resulting plot of velocities. The computational time step

was ht = 30 sec.

Field measurements will be used for boundary conditions and

to verify the models. The coarse and fine grid models will be "patched"

together to predict the complete tidal circulation in the neighborhood

of the proposed generating site.

A point of warning is issued with respect to prescribed

discharges. Referring to a hypothetical example shown in Figure 8-31

it is tempting to prescribe magnitude and direction of flow at nodes

A, B and C. Although this seems reasonable it will, in most cases,

lead to impossible situations ~here the sea surface has to be displaced

large distances to satisfy equilibrium. The correct way is to pres-

cribe only the normal discharge and allow the tangential free to adjust,

at least at B and C.
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50 cm/ace

Figure 8-30. Sea11 scale circulation at AGS. Prescribed inlet
discharge oniy.
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Figure 8-31. Specif ication of discharge,

As a final point, it is noted that for the triangular linear

elements the best accuracy is obtained at the centroid of the triangle.

This is due to the f act, that in the interior of an element the trial

functions are smooth, i.e. they have derivatives, which is not the

case on element boundaries. When interpreting results, it is therefore

better to use the element centroidal values, as we have done in the

presented studies.

On an IEH 370/158 machine the solution of a problem with 225

elements, 150 nodes and 450 time steps cakes apnroximately 112 sec CPU

time and uses 180 K bytes of storage.
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CHAPTER 9

REVIEW. NJLTI-LAYERED MODELS

The basic difficulties in attempting a fully three-dimensional

model are the parameterization of the constitutive equations and specifi-

cation of the boundary conditions. By requiring better accuracy of the

models, we must also be prepared to provide more accuracy in the applied

loads, such as wind fields and tidal forces. It is even more obvious in

this case that prescribing only the surface elevation at the ocean boun-

dary is not sufficient. The actual velocities and their time variation

must be known. Although none of the existing reports on three-dimensional

models, or for that matter multilayered models, discusses these problems,

it appears that these models at best are descriptive. The models must

be calibrated before use by adjusting parameters such that actual field

measurements are duplicated. Even though the usefulness of these models

is somewhat reduced in this way, they can have significant impact on

establishing trends and to help organize field monitoring programs.

The only attempt on modeling three-dimensional flow is out-

lined by Leonard and Melfi [40]. They propose a steady state finite ele-

ment model for lake circulation without stratification. Their primary

objective was to discuss the numerical framework on which a model could

be based. Thus they present no results! Assumptions of incompressibi-

lity and hydrostatic pressure apparently led them to the equations

 9.1! �  T + T ! � f v+ G
p xx,x yx,y

 9.2! �  ~ +~ !+fu=G
I

p xy,x yy,y
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 9. 3! u +v +w ~ 0
~ x qy ~z

with

p
=-g rl z!+c u +u .! ij =xy

1

jsi
 9. 4!

l94

and c, is a horizontal eddy viscosity coefficient. In thr equations of

motion, the convective inertia and the vertical momentum transfer terms

are neglected. The latter assumption makes it impossible to handle a

wind stress on the surface. Even if the stated problem can be solved by

the proposed Newton-Raphson iteration technique, which yet has to be

shown, the model utility is very limited.

We quickly turn towards more meaningful works on multilayer

models. Simons prepared a report on lake circulation [65 ]. A multi-

layer formulation is derived using vertical integration over each layer

which can be physical or imaginary. The density is assumed dependent

on temperature only and the energy equation is used to find the tempera-

ture field.

The usual assumptions of hydrostatic pressure, incompressi-

bility and small density variations are made. The layer interfaces are

either assumed fixed  imaginary! in which case the vertical velocity

is computed or movable material surfaces  physical! implying a computa-

tion of the displacement.

The governing equations are the vertically integrated conser-

vation of mass and horizontal momentum equations for each layer. The

problems of interfacial shear and mixing or boundary conditions are not

discussed. In the case where the density stratification becomes unstable,



 Hu! +  Huu! +  Hvu! +  wu! 1 �  wu! 1I 't ~X k2 k+ 9. 5!

� fHv + � p +  - z. ! �  - t !H 1 1
P ,x p xz 1 p xz 1"2 "2

 HE u ! � �  HE u ! ~ 01 1

p x ,x ,x p y ,y ,y
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a strategy is suggested in which the water. column is mixed instanta-

neously. The ma]or parts of the report are devoted to discussions of a

numerical solution technique. Finite differences are used with a leap

frog  time centered! time integration scheme. Since the leap frog method

leads to Instability for dissipative terms, these are handled by simple

forward differencing. A time averaging process may also be necessary to

avoid the solution splitting characteristic of the three level leap frog

method. Several schemes for the spatial differencing are tested as

mentioned in Chapter 2. The accuracy of the results are found to be

sensitive to the orientation of the grid in relation to the boundaries

of the basin. For the model employing two space grids simultaneously,

considerable grid dispersion is noticed starting at the boundaries where

the two grids necessarily differ. No multilayer computations are presen-

ted; but work is apparently progressing in that direction along with

extensive field measuring programs.

Along the same lines, Leendertse et al developed a three-

dimensional model which really is a vertically integrated, layered model

[ 39]. The water mass is assumed incompressible and the density is a

function of salinity only. The equations of motion for layer k are:



 Hv! +  Hvu! +  Hv ! +  wv! �  wv!
Ix ~y

2 2

 9. 6!

+ fHu+ � p +   � y ! �   � g !h 1 1

p,y p yz k+1 p yekl"2 "2

� �  HE v ! � �  HK v ! 01 1

p x x x C y .y y

where k is 1 at the surface and increases down through the layers

to b at the bottom. Subscripts k + � refer to imaginary interfaces1

2

at which the vertical velocities are computed from the continuity equa-

tion

b

w � ! Hu! +  Hv! !
k-� i~k

2

 9. 7!

At the surface the elevation is computed instead of w

b

q - !   Hu! +  Hv! !
!t i=1 gx

 9. 8!

The salt concentration is governed by the dispersion

equation

 Hs! +  Hus! +  Hvs! +  es! -  ws!
k-- k+-

2 2

 9-9!

 HDs ! -  HDs ! +  vs ! -  Ks ! 0X AX gx !z k 1 ,z k 1
2 2

and dispersion definitely does not have principal axes along x- and y-
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Aside from the fact that the structure of the eddy viscous

and dispersive terms is inconsistent  v f T in their formulation



axes everywhere! these equations clearly point out the foremost problem

of three-dimensional models: there are many parameters that we presently

do not know how to determine. Predictive models can therefore be ruled

out for some time to come; but even descriptive models will need an

enormous amount of supporting field data. These issues are not discussed

or even mentioned in any of the reports on three-dimensional models.

Having indicated their mathematical formulation, equations

 9.5!- 9.9!, Leendertse et al discuss the numerical finite difference

solution scheme in some detail. The explicit leap-frog method is used

in time to avoid the messy coupling of variables by implicit methods

such as the alternating direction implicit method  ADI! ~ The spatial

grid structure is the same space staggered grid as Leendertse used in

his two-dimensional model, see Pigures2-3 and 9-l, except for the loca-

tion of the depth values. As many of these grids are placed on top of

each other as necessary to resolve the vertical variation, Figure 9-2.

Por programming reasons, the bottom must be approximated in steps of the

layer thickness causing some numerical problems at the ~umps. The model

was only capable of handling circulation in closed basinaalthough work

is continuing on implementing an open boundary condition. Several test

examples are shown with and without density stratification in two or

three dimensions.

Two layer models are less ambitious than the three-dimensional

models discussed above, but can give very illuminating results because

there are fewer parameters to ad!ust.

Liggett and Lee [42 3 and Gedney et al [23 1 developed prac-

tically identical two layer models for steady state lake circulation based

3.97



»W~e 9- 1 The location of u   � !, v  I!, and other parameters
 +! in the space-staoaered arid [39]

I ig>ufo 9--' Relative position of the variables in the model [39]
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on earlier work by Welander. The equations solved for each layer of

constart density are

1
+ E u

p ax z ~zz
 9.]0! fv =�

1fu ~- � p +K v
,y z ,zz

 9. 11!

1
g p

P qz
 9. 12!

 9.13! u + v + w 0
~x ~y Iz

Transient two layer, two-dimensional models are starting to

199

The solution proceeds exactly as described in Chapter 2 for

the rigid lid approximation. The explicit dependence of u, v on z

is found from  9.10!,  9.11! and boundary conditions. Equations  9.10!

 9.13! are integrated over each layer and then solved numerically

for average u, v and p  or equivalently surface and interface levels!

and finally w can be derived from  9.13!. There are essentially only

two parameters, E for each Layer, in this formulation, although ofz

course many others have been neglected through approximations. Both in-

terface position and currents were found tn be somewhat sensitive to

variations in E

As noted in reference f42] , the response time of a water body,

homogeneous or stratified, may be of the crder of days  we computed ap-

proximately one day for Mass Bay in Chapter 3!. Steady state circulation

may therefore rarely, if ever, be attained and such results can at hest

represent average long term conditions. This approach is hence less

attractive for coastal areas.



appear in the engineering literature. The situation of two distinct

layers of different density is realistic for many natural water masses

and can be reproduced in the laboratory. There is therefore a reasonable

possibility of determining the parameters involved.

Abbott and Grubert [ 2 ] are extending previous work to

layered flow, numerical algorithms, and representation of fronts on the

interface.

A two layer model for thermal diffusion caused by outfall of

cooling water is described by Wada f75]. The vertically integrated

equations without the coriolis effect are used. Hydrostatic pressure and

constant density in the bottom layer is assumed. Mixing or entrainment

and heat exchange between layers have been omitted. Considerable efforts

were expended to obtain reasonable dispersion coefficients. These were

determined from current measurements using Taylor's theorem

K ~ u' R  T! dt
0

 9. 14!

K ~ v' R  T! A
V

 9. 15!

R are the Lagrangian autocorrelation functions of the u
V

where R and
u
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and v velocities. The density in the top layer is assumed to be a linear

function of temperature. The usual quadratic interfacial and bottom shear

laws are used although no data is given for the coefficients.

Finite difference approximations are used to obtain numerical

solutions with the dependent variables staggered in space and time. For-

ward  explicit! time differences and centered space differences are em-



 9. 14! hl +  hlul! +  hlvl! + v 0l,t 1 1 ,x 1 1 ,y ent

 9. 15! 1 11 11 g 1 2L,t 1 l,x 1 l,y l,x 2,x

v u
ent 2�  z � r ! � fv +1 i s

hl x x 1

 9 16! vl 1 1 1 ] g  hl + 2 !l,t 1 l,x 1 l,x

V V1   i 8 ! + f i ent 2 0
hl y y 1 h

for the upper layer. For the lower layer:

 9.17! h2 +  h2u2! +   2v2! - v = 0' 2,t 2 2 ,x 2 2 ,y ent

201

ployed. The accuracy and stability is not discussed for this scheme,

which, in order to treat boundary conditions properly, has to introduce

artificial nodes outside the boundary.

Some example computations for simplified geometries are pre-

sented, but detailed information about treatment of model boundaries is

missing. Orthotropic dispersion is used, however with principal direc-

tions dictated by geometry rather than current patterns. No comparisons

with known solutions or field verification are presented.

Perhaps the most in depth going report on two layer models is

presented by Codell [ 9 ]. The mathematical formulation follows the works

by Leendertseand Wada and the latter's vertical1y averaged equations

are used with source terms included. They are:



 9.18! u2 t + u2u2 x + v2u2 +  hl x h2 x!

g ~2- ~,!
1 i b+ h � �  T -x ! -fv «0

p 2,x h x x 2

 9. 19! v2 + u2v2 + v2v2 + g hl + h22,t 2 2,x 2 2,y 2,y

 P2- Pl!
+ g

P
h � �  t - v ! � fu 01 i b

2>y h2 y y 2

h and h are the layer thicknesses.

ve t is the velocity of entrainment of water from lower layer to

upper layer. The 1oss of momentum by entrainment in the lower layer is

ignored. These equations of motion are coupled with a thermal energy

equation for the upper layer only

1 l,t AX ~ y jx
gx

 9. 20!

+  lol 1! 1+ 2+v ~ T1 1 l .y 1 1 2 ent 2
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where Tl and T2  assumed constant! are the upper and lower layer

temperature.s, D is a thermal diffusivity and s , e are parameters

in the heat source terms. Due to computer limitations only the one-di-

mensional version of the above equations were actually programmed as a

model, snd then only used to compare with a simplified stratified model.

The simplified model consists of a one layer analog of the

two layer system. By assuming a rigid lid on the top layer, the lower

layer to be of great constant depth, and neglecting its dynamics, the

upper layer equations uncouple and reduce to, omitting subscript 1



 9.21! h +  hu! +  hv! + v ~ 0
~t ix ent

 9.22! u +uu +vu � fv+g h + �  Y -t +v u! 01 i s

sx >y ,x h x x ent

 9.23! v + uv + vv + fu + g h + �  t - T + v v ! ~ 0i s

yt yx ,y h y y ent L

where u , v are lower layer velocities which then presumably must

be known, and g' is the reduced gravity.

P2- Pl
g g '

P
average

 9. 24!
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The surface wave has been eliminated by this procedure and only the

internal wave is resolved by the model. The advantage is a large re-

duction in the wave propagation velocity by a factor of  h P /P! with

corresponding improved numerical stability. However, the applicability

of such a model is clearly very limited.

Leendertse's space staggered grid is used with the leap frog

time method to solve equations  9.21! �  9.23!. The treatment of boun-

daries both physically and numerically is extremely poor and often

overrestricts the problem. For a stream inflow, for example, prescrip-

tion of both velocity and depth is suggested, which is necessary to

specify a discharge>but is inadmissible. As noted before, this is one

reason that we chose to use the more natural variables of depth and dis-

charges. As an other example, both the normal velocity and the normal

derivative of the surface elevation are required to be zero at land

boundaries, which is inconsistent with the formulation. Although the

models developed by Codell thus are very crude, the fundamentals of the



two layer formulation are Listed in his report. Fe also paid some atten-

tion to the parametric expressions and tried to determine the parameters

involved, which will be discussed in the next chapter.

We conclude this review by identifying what effort we feel

is necessary in order to make three dimensional models a useful engin-

eering tool. Our present understanding of the physical phenomena and

the state of the art of field monitoring programs raises some serious

questions as to the applicabi1ity of three dimensiona1 models. The

numerical techniques to solve the problem may be at hand, but there are

so many unknown parameters in the formulation that probabLy any result

could be produced by ad!usting these properly. That is, however, a

rather useless and expensive exercise. The multilayer idealization,

specifica11y the two layer model, contains most promise of a predictive/

descriptive tool in the near future. The possibility of using labora-

tory experiments which readily reproduce layered flow shou1d not be

underestimated. The full scope of a two layer model should therefore be

investigated first. Its formulation is presented in the next chapter,

followed by a finite element solution strategy, sample solutions and

coihparisons with analytical and experimental results.
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CHAPTER 10

FORMULATION OF MULTI-LAYER CIRCULATION

Since there is no difference between formulations for two or more

�0.2! u +v +w = e
qx y tz
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layers, we present here a general multilayer mathematical formulation.

Predictably, relative density differences must have large influence on

the final results and multilayered models should therefore ideally

account for variations in the density field. In the review chapter

attempts of including either a salt or heat balance equation were men-

tioned. To solve these additional equations numerically is, however,

a very minor problem; the major difficulties lie in specifying source

terms, spreading coefficients, boundary and initial conditions. We

choose to concentrate our efforts on the pure circulation problem and

consequently assume the density field is known. It is simple to build

later, an extra structure into the model which will actually calculate

the densities, salinity or transport of di.ssolved matter.

The vertically integrated layer equations are derived from the

three dimensional equations of motion in the same manner as in the one

layer case. Some of the repeated manipulations are therefore left out.

On the sketch in figure 10-1 we define the variables for an arbitrary

layer. To obtain the most general formulation the bottom is treated

as any other interface. Assumptions of incompressibility and constant

density over depth for each layer are made.

�0-1! p = p  x,y,t!

Conservation of mass, is expressed by





where e represents internal sources. Integrating equation �0.2!

over layer k gives

k k k kk,t kx,x ky,y k
k- I

� w +
k o k-1

k

where

�0.4!

I k-1
�0.5!

�0.6! q = vdz
ky

k-1

�0.7! edz

n k-1

After integrating over layer k we can write the momentum equations

as

+ uq ! + uq ! =fq �  F -F !kx,t k kx ,x ky ,y ky kp kxx ,z
�0. 8!

+ F + �  t1

kyx y p kx I +pn � p k-l!x k k,x k-1 k-l,x
Pk-1

U
p k-1 k-1

k
kx k k

q +  vq ! +  vq ! =- fq +Fky,t k kx ,x k ky ,y kx kxy,x
�0.9!

l F � F ! + - �  v + p n � p q !
kp kyy,y p ky  k-1! y k k,y k-1 k-l,y

P

k
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and w , wk I are the relative normal velocities at interfaces k and

k-l, that is, w is a net entrainment or mixing velocity between layers

k and k+1.



where only the significant coriolis terms are retained.

If vertical accelerations are negligible compared to gravity,

which we reasonably can assume for tidal flow, the third momentum

equation reduces, as usual, to the hydrostatic pressure relationship:

�0.10! Fk - pdz = � kHk kHk 2gpk k k II 1 I 2 2
kp p p

khaki k

I I 2

Pk k-I k 2 k0 k

I 2

I 2

2 k k

p  x>y t! = p + hp  xy t!�0.11!

Introducing Roussinesque's approximation, we obtain

I I 2 I k 2
kHk + HHk + ~2p ~Hk

kO kO

�0.12!

I I 2 1 k 2

Pk0 Pkok-I k 2 k 2 k

Additional relations are

�0.13! p � p = p gH

and

�0. 14! F = -----  p p ! llI

kp 2p k

Equations �0.13!, �0.8!, �0.9! and �0.12! are the "fundamen-

tal" equations governing multilayer circulation, i.e. they are based
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where p is the pressure at interface k~ and the density is assumed

to consist of a constant average value p and a small variable varia-

tion hp



on physical laws. To solve the problem the mixing velocities w ' thok'

must be specified. To do this, with some confidence in the values

employed, is not feasible at present except in very simplified situa-

tions.

Attention is called upon the fact that coastal areas seldom exhi-

bit more than two layer stratification. The object of multilayer

models is therefore to represent a three dimensional problem rather

than to impose a layering on the system. Consistent with this, one

visualizes the layers as having constant depths, with flow across the

interfaces. In this case w becomes the actual normal velocity at the

imaginary interface k, and equation �0.3! is rewritten

k-l
�0.15! w = ~ � q � q + q

k o kl kxx kyy

At the bottom w is zero and at the surface, which of course is
0

allowed to move, we have

K K-1
w + q

Bt p K-l Kx,x Ky,y K
�0.16!

For small interfacial slopes w is approximately equal to the vertical

velocity at the same point. Obviously, it is necessary to bookkeep

the changes in density, which adds a further complexity to this kind

of modeling. En view of these difficulties we restrict ourselves to

two layers in the remainder of this report. This restriction simpli-

fies the problem significantly; but is a sufficient extension of the

one layer model to illustrate many new phenomena.

Writing out the specific equations for the two layer case, we
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internal stresses F, F, P; and the interfacial shears r, rkxx' kxy ' kyy ' kx' ky



have for layer 1,

H +q +q q � w
l,t lxx ly y 1 1

�0. 19!

+m � wv
ly 11

and for layer 2,  top!:

ol
�0.20! H +q +q = q +~

2,t 2x,x 2y,y 2 p 1

�0. 21!

�0. 22!

~here p is surface atmospheric pressure,and the specific pressure

force measures are

1 2F - 2gH 1
+ � � p H

1 1
�0.23!

1 2

2p 2 2
1

+ � -p H
'20 ' '

�0.24!

The pressures at the interface and bottom are obtained from equation
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�0.17!

�0.18! +  u q ! +  u q ! = fq �  F � F !
lx,t 1 lx ,x 1 ly ,y ly lp Ixx ,x

1
+F +- � - T � T +p n -p q !+m -wu

lyx,y p lx Ox 1 l,x 0 O,x lx ] 1

q+ vq!+ vq!=-fq+F
ly,t 1 lx ,x 1 ly ,y lx lxy,x

l F � F ! + �  v � x + p q � p q
lp lyy ,y p ly Oy 1 l,y 0 O,y

q + uq ! + uq ! = fq - F -F !
2x,t 2 2x ,x 2 2y ,y 2y 2p 2xx ,x

1+F + �  T - T +pq � pn
2yx,y 0 2x ].x 2 2,x 1 l,x

0
1

+m +~u

q + vq ! + vq ! = � fq +F
2y,t 2 2x,x 2 2y,y 2x 2xy,x

 F � F ! + �  T � T + p q � p1

2p 2yy ,y p 2y ly 2 2,y l l,y

P
1

2 1 102

+ ~- � H
1 1 2

10

+ ~8
2 P20 2



�0. 13!:

�0. 25!
1 2 20 2

0 2 20 2 10
�0.26!

Bottom shear stress is handled in the same manner as in chapter 3.

T
2 2 1/2 lx�0.27! = C  q + q !

1

�0.28! ~0 2 2 1/2 ~l
p f lx ly 2

=C  q +q

1

where the friction coefficient C is determined from table 3-1 using
f

H as the depth.

Similarly, surface wind stress ~ is determined with the same

s
relationship used for t in chapter 3, equations �.3.23! and �.3.28!.

T

=C  u-u!+ v-v!! u � u!
10

�0.29!

and
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The essential difficulties are encountered in the treatment of

the interface A two layer idealization cannot represent explicitly

the mass and momentum exchanges taking place in the transition region

between layers. We include a shear stress r and a velocity of entrain-

ment w at the interface to simulate these processes. However, their

functional dependence on the mean flow variables must be specified.

In most cases the effect of r predominates.

The standard approach relates ~ to the square of the velocity
1

differences of the two layers, namely



T
~l � � 2 � � 2 1/2

�0.30! T =C  u -u! +  v � v !  v -v!
10

where C is an interfacial shear stress coefficient; u , u , v , v

are the average layer velocity components; and .r , T act in the
ix' ly

u ~ t.

v
�0.31!

u
jp�0.32!

jR is a ratio of inertial to viscous forces, whereas lF is a ratio of

inertial to gravitational forces; u and t, are velocity and length

scales; u is the kinematic viscosity; p and hp are density and density

difference and g is the gravitational. acceleration. For stratified
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positive x, y directions on the bottom layer, figure l0-1. Experi-

ments have shown that �0.29! and �0.30! are reasonable approximations

for the interfacial shear. However, since the flow regimes in the two

layers are highly variable it is sometimes found that C is dependent
1

on the Reynolds and densimetric Froude numbers. Unlike the one layer

case where flow conditions are usually rough, turbulent, it is possible

to have all combinations of smooth � rough and laminar � turbulent

situations at the interface for two layer flow.

Unfortunately most data on C are obtained for cases where one

layer is stagnant. A very comprehensive report on published data and

methodologies for treating momentum and mass transfer in stratified

flows has recently been published [33]. When the available data is

compared, no apparent relationship between C and Reynolds or Froude

numbers are evident. These dimensionless numbers are defined by



flows a Richardson number is used instead of P<

�0.33! Ri
1

jF

For laminar flow an inverse proportionality between C and R is

implied from inspectional analysis:

�0.34! C
1

for R < 2000

For turbulent flow, on the other hand, it is expected that C is a

function of P . While �0.34! has been verified qualitatively, the

scatter of data points is too large to determine an explicit function-

ality between C and F<. In [33] average values for C>are found for:

-4
C=7-10

1

Based on Blasius' empirical friction law for turbulent boundary

layer flow over a smooth plate [62], Codell [9 ] suggest the following

relation for C

�0.38! C 0.0099 R
1

where

�0.39! R =

H is the depth of the fastest moving layer and hu is the absolute vel-

ocity difference. For R 10 equation �0.38! gives C = 10 10

in good agreement with �0.37!.

The uncertainty in C is obviously large. Experience with compu-

tations of salt water and hot water wedges shows that interface loca-

tion is quite sensitive to the value of C . For any particular problem
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�0.35! stagnant bottom layer

�0,36! stagnant top layer

�0.37! counterflow

-4
C =4 10

1
-4

C = 15 . 10
1



ment rate and Ri:

-1
E = E Ri0�0.40!

where

1

2hu
�0. 41!

and

Ri =

�AU!
2

�0.42!

where bu is the velocity difference and H is the upper layer thickness.
1

Although the inverse proportionality �0.40! is reflected by all exper-

iments there is a large spread in the coefficient E . The order of
0

1/2 ,magnitude of K seems to be 1 when the shear velocity u =  T/p! is0 s

used instead of Au. Considering future developments, it is also desir-

able ta be able to determine the turbulent interfacial mixing in order

to compute mass and heat transfers. Some theoretical thoughts on this

are also presented in [ 33].

Codell [ 9 ] derived an expression from a graph presented by I.ean
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we suggest that extreme values [�0.35! � �0.36!] be used to bracket

the solution or that fitting to actual field data is used to determine

reasonable C . Equations  l0.38! and �0.39! seem to give reasonable

values for C , but may not be valid for large R.

Interfacial mixing or mass transfer between layers is of less

importance to us in this work which assumes the densities to be given

functions. Entrainment from a slowly moving layer into a faster moving

layer is of interest. We shall assume that the flow is subcritical

such that IF < 1 and Ri > l. Under this condition, in fact for Ri > 0.5

all experiments exhibit the qualitative relation between the entrain-



case we define:

�0.43! F = E . 2q

�0.44! F = F = E  q + q
kxy kyx kxy kx,y ky,x

k = 1,2

�0.45! F = E ~ 2q
kyy kyy ky,y

As noted in [33] it is int'cresting that due to the assumptions in

the derivation of the turbulent transport equations it is found as a

first approximation that F is related to u and not q as we
XX tz xqx

have assumed, when flow in the vertical plane �-dimensional! is con-

sidered. The internal stresses in our case also contain contributions

from the vertical velocity profile in addition to the turbulent
215

and Wbillock [ 37], finding the coefficient to be 0.00208 using �0.40!

�0.42!.

Finally we resort again to the eddy viscosity concept to express

the internal stresses F , F , F . The experience with these inxx' xy' yy'

stratified flow is very limited. Recent developments in modeling of

turbulence have found more success in a different approach. The

Reynolds stresses, mass fluxes and density fluctuations are all treated

as transport quantities leading to 10 equations and unknowns. The

triple correlations which cannot be directly related to flow parameters

are quantified in terms of turbulent energy and dissipation. Even

for a vertically integrated formulation there would be 6 flow parameters

to determine per layer, which is a doubling of our 3 equations and un-

knowns. At this time we feel that more is gained by using the "cruder"

eddy viscosity approach for coastal circulation, especially because

of the uncertainty in boundary conditions. Analogous to the one layer



the two approa<:hes. When turbu]en< e is the dominating phenomenon, it

is possible that  l0.43! � �0.45! represent th< actual process rather

poorly.

The values nf the «ddy vis< osity coefficients can be estimated

in the same manner as indicated in chapter 3. Th» importance of

internal str<'ss t»rms is not known in general, but expected to be small.

All parameters for a first approximation have now been expressed

in terms of the mean f]ow. Specification of mode]. boundary conditions

remains.

Fxact]y as was the case. for one layer circulation, information

about the discharges <>r forces is needed at boundaries. At discharge

boundaries S and S the normal and t«ngential discharges are pre-
lq 2q

scribed.

q *
kn kn

qks = qks'

�0.46!

�0. 47!
on S for k = ].2

kq

At land boundari»s, the pres»rib«d values q * nnd q + are usually
kn ks

zero. For a stream connecting to the area q * is in general a time
kn

dependent function.

Ocean boundaries shou]d, as discussed hefor», preferably have

prescribed discharges «]so. In many cases the «ffcct of internal

stresses must howev»r b» n< gle< ted in order th«t pressure be used as

specif i ed condit ion. l'r»ssure is ensi 1 y translated to 1«yer depths,

whence we obtain

F = F ~' or ll = H > on S
kp kp k k 'kF'

 ]0.48!
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stresses, and there is therefore not necessarily a contradiction between



An often overlooked but important item in the problem formulation

is the initial condition. A two layer system obviously has more degrees

of freedom than the one layer system and specification of reasonable

initial conditions therefore become more critical. Both discharges and

layer depths must be known at some initial time, t = 0:

kx' ky kx0' kyO
at t=O for all x,y in 8 and k = 1~2

�0.50! H = H

Because it generally requires more time to get rid of the effects of

imposed initial conditions it is advantageous to choose these carefully.

Summarising this chapter, the two layer formulation uses the

vertically integrated variables: layer depths and discharges, governed

by the equations �0.17! � �0.22!. Pressure forces are given by

�0.23! � �0.24!. Bottom friction is derived from �0.27! � �0.28!

with Cable 3-1. Surface wi.nd stress is approached as in chapter 3.

Interfacial shear and mixing can as first approximations be determined

from equations �0.29! � �0.30!, �0.35! � �0.37! and �0.40!, �0.42!

with a coefficient of 0.0021. Finally, the boundary and initial con-

ditions must be specified according to �0.46! �  lO 48! and �0.44!

�0.50!.
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CHAPTER ll

WEAK FORM AND SOLUTION SCHEME

11.1 WEAK FORM OF TWO LAYER FLOW EQUATIONS

The transformation of the two layer equations into their weak

form proceeds in exactly the same way as described in Chapter 4, and there-

fore we gust write down the result here.

+q - ql+wl~O l,t lx,x ly,y 1
�1. 1. 1!

�1. 1. 2!

1   +pa -pa ! -Im +wu! Aqpl ' lx ox 1 l,x oo,x 1x 11 lx

I dA+
lx,y

�  F -F !hq +F
lp lxx lx,x lyx

r a F * Aq ds
lF nx p

hq ds 0
lx

Of qly,t '   lq~!,x '  "iqly!,y ' q�1. 1. 3!

 T � T +pR -pal !-m +wv! Aq
P ly oy 1 l,y o o,y ly 1 1 fy

+ F hq �  F � F ! hq ] dA +
lxy ly,x lp lyy ly,y



F gq de-
ny lp 1y

1F

nx xy ny lyy lp ' ny ln nx ls Iy
lq

5q ds 0
ly

l q2�+   2q2�! �+   2 q2y! ll. l. 5!

l 2 1 2"2, 1"1, 2 1 1 2

2p 2xx 2x,x 2yx 2x,y- F � F ! hq +F 5q 1dA+

t S nx 2p 2x
2F

2q

pq de 0

�1.1.6!

1 ly 2 ? y- P191 y!- 2y- 1 1 q2y
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Pg�114! fH +q +q -q + � w! 5H dA 02t 2xx 2yy 2 P2 1 2



+ F Qq -  F � F ! Qq ] dA+
2xy 2y, x 2p 2yy 2y,y

r u F hq dsny 2p 2y
2F

r tI~ F +«F � F >}+<~ q +. qnx 2xy ny 2yy 2p ny 2n nx 2s 2y'S2

hq ds 0
2y

I
q, Qq and hq belong to Wky' kx ky

0
from the extended space

whereas only AH can be chosen

11.2 FINITE ELBNENT EQUATIONS

The application of the finite element method is again merely

a repetition of the procedure described in Chapter 5. Linear triangles

are the simplest elements satisfying the continuity condition imposed on

trial and test functions. Substituting these expansions into the weak

equations and carrying out the area integration results in

�1.2.1! N 'H = F
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The integrals over S should theoretically vanish. However, when the
kq

finite element method is applied with a fairly coarse grid, a discrepancy

between segmental and nodal normals exists with linear triangles. The

correct definition of the nodal normal direction was discussed in Chapter 5,

and the S boundary integrals contain corrections which vanish, in the
kq

limit, as the grid is refined.

The functional requirements are as before that H , q
kx'



 ll. 2. 3! N 82 P�22,t H2

�1.2.4! N2 Q2 P 22 2t Q2

5. Hl and H are the nodal values of layer depths H and H . As

before, we define a combined nodal discharge vector  Equation �.32!!

for each layer Q , Q in order to treat boundary conditions properly.

The load vectors P , P , P and P 2 are functions of Hl, H2,

Ql, Q2 and external forcings.

It is convenient to use the same FK grid for upper and

lower layers. Different grids could be used but would necessitate an

interpolation of variables between the grids.

11. 3 TINK INTKGRAT ION.

The split time method is applied to the FK equations with

the layer depths defined at times... t � � ht, t + � 6t ... and dis-1 1

charges at times ... t, t + ht ... . Then we may write

N Hl W l! M Hl  1! + ht PHln
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The M and N2 coefficient matrices are the same as defined in Chapter



and

�133! M Q ~ M Q +Pt P

�1.3.4! 2 Q2  +1! M2 Q2 + gt PQ

Assuming the values of gl  I! H2  1! $1 and p2 are given

the solution is propagated by first solving �1.3.1! and �1.3.2! with

the load vectors determined at time equal to t , except that H, aren'

replaced by H, 1 and H, ~ Next, Equations �1.3. 3! and  ll. 3 ' 4!H,   !
are solved, evaluating P 1 and P 2 at time t + 1 with the exceptionn+ 2
that Q   ~l] is replaced by Q and Q . The split time scheme is

therefore equivalent to a centered time differencing of local acceleration,

principal gravitational and a11 external load terms, whereas a simple for-

ward differencing is used for non-linear, coriolis and internal stress

terms. The accuracy is hence essentially of order 5t , but could2

deteriorate to 0  gt! if the forward differenced terms become dominant.

A theoretical stability analysis is made difficult by the coupling between

layers and is therefore not attempted. Experience with this scheme has

shown it to be reasonably stable and accurate. Thus time increments in

the neighborhood of Qt for the external wave can be used. Note
cr

that, as a first approximation for long waves, the external wave velocity

is given by:

�1.3.5! c g Hl + H
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and the internal wave velocity is similarly:

g P1 P2! 1 22

i
�1.3.6!

p,'H+H !

The external wave propagates with the same velocity as if the medium was

homogeneous and the internal wave moves slower by an approximate factor

of For numerical stability, c is the decisive factor
Pl

whereas ci determines the time interval where the specified initial

condition still plays a role. Due to c it is generally necessary to

integrate over much longer periods in order that the results become inde-

pendent of initial conditions than in the one layer case.

Figure 11-1 shows a flow chart for the two-layer model.
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Figure ll-l - 'Flow Chart for Two-Layer Model
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CHAPTER 12

VERIFICATIONS AND APPLICATIONS

The relative1y short time the two layer model has been opera-

tional limits our experience with it as a predictive tool. Some compari-

sons with known analytical solutions and also a verification against ex-

perimental data are presented here. An application of the model to a

rectangular idealization of Massachusetts Bay is included to illustrate

its potential.

pl, p2. The channel is closed with a verticalhl h2 and dens it ies

wall at x 0 and the surface and interface are forced according to

�2.1.1! Ill ylIO + b cos ~t x -L

�2. 1. 2! x -L'll2 Tl2P + a cos ~t

where qlO and q2O are the mean positions.

Neglecting friction, coriolis and external forces, the governing

differential equations, are  Layer 1!:

P2�2,1,3! q + gH ~q + � q Ol,t 1 ip l,x pl 2,x
1

�2 1 4! Hl + q - O
l,x
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12.1 Anal tical Stud - One Dimensional Channel

The first example consists of the system shown in Figure 12-1,

a rectangular channel of length L having two layers of water with depths
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 p p p!where

1 ayer 2

�2. 1. 3! q +gH q = 0

�2.1.6! H2 + q22,t 2,x

�2. 1. 7! 1 ~ l 0 10 ~0 1

�2.1.8! 2 ~2 1 "20 10 ?

One obtains after some calculations

Qn P2
l,tt 1 g 1,xx c '2,xxj�2. 1. 9!

�2.1.10! n2 � nl gh2 r 2 - 0

The boundary conditions are given by �2.1.1!, �2.1.2! and

�2.1.11! q ~ 0 x ~ 0
1!x

�2.1.12! q ~ 0 x ~ 0
2ix

The two latter conditions are derived from �2.3! and �2.5! by re-

quiring the discharges to vanish at x 0 for t ! 0. We look for a

harmonic solution and assume
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This set of equations is further simplified by linearizirg and assuming

the bottom to be horizontal. Let



rl = Real {C. k
i4!t

j
�2. l. 13!

Equations �2.1.10! and �2.1.9! then given

gh2
+

2 g 2~xx
�2, l. 1~i! a

1

 h +h gh gh2
+ g i +

L p

2 2,xx p
�2.3..15! 0

2yxxxx

The problem is now reduced to finding i> aid we assume a cosine

series solution

Real '2 A cos k x e !i<at

2 n n n
�2.1.16!

which satisfies �2,1.12!. Inserting in �2.1.15! gives

p  h+h ! Pl
k � � <.i k +

1 1 4!
0

n hp gh h n P.p gh gh
�2.1, 17!

It is easily verified that the argument of the square root is always

positive and therefore there are only two wave numbers.

2 2 hp gh h, 2 hp ghl h2 Qp ghlgh�2.1.19!

0 +h,!

hp gh lh�
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pl  h]+h2! 1�+2!
�2.1.18! k = � � uJ i u3   � !

~P ghl h�2 ghl h2 ~p ghl



iv 2

g h+ h !

Na t ing the relation

c
k

�2. l. 21!

the wave velocities given in Equations �1. 3.5! and �1.3.6! are

easily derived.

The final solution is

�2.1.22! >12 =  A cos kl x + B cos k x ! cos idt

cos 4i

where
gh2

a�-~k ! -b
0! 2

 kl -k2 ! cos kl L1 2

�2. l. 24!

gh2
a ~ k � 1!- b

1
�2.1.25!

gh2
 k � k ! ~ cos k2 L

In the first test the density difference was assumed zero

and the channel was forced as a homogeneous medium. Table 12-1 lists
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gh2 gh
�2.1.23! F1  A ��

1 1 1
k ! cos k x + B I � � k !cos k x!

M2 2 2



the parameters used. For an interval of more than 3 T, the computed

solution agreed with the analytical result presented in Chapter 8.

The velocities in both layers vere equal at all times and the inter-

face displacement was exactly half of the surface displacement. The

split time method was used and the surface and interface position was

prescribed as initial condition at t ~ 0 with all velocities zero.

Table 12-l. STANDING WAVE IN HOMOGENEOUS

TWO LAYER CHANNEL

For the second test, the densities were assigned different

values. The interface was assumed fixed at x -L and the period of

the forcing was ad]usted so that approximately 2 full interfacial waves

were contained in the length of the channel. Table 12-2 contains the-

valuee of the parameters and Figure 12-2 shows the exact position of

both surface and interface with the error of the computed interface po-
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 error  pl!  pl! ! plotted underneath. The computed
exac t FE

solution was started

Table 12-2: STANDING WAVE IN TWO LAYER
CHISEL COURSE GRID

at time 0 with the correct initial condition and the results shown

are for time t = T. Since the results are rather inaccurate, the

FE discretization was improved by halving the grid spacing in the

x direction. Computed errors for this grid at t ~ T and t 2T

are also shown in Figure 12-2; the time step used was At 1.25 sec.

Finally, to settle whether the errors are caused by grid dispersion

 spatial truncation error!, the forcing period was doubled leaving

only one internal wave in the channel. The parameters for the numerical
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0.20

0.10

i 0.20

i O,fb

0.01

- 0.0$

' ~ gl lateral gri4 1 r
Error  x5! ~ RO lateral ~4. 1 T

20 lateral att4 2 T

Figure 12-2. Standing wave in two layer channel. Comparison
between analytical and FE solutions. T = 500 sec.
Error is difference between exact and computed
solutions for the indicated grids and times.
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computation are listed in Table 12-3 and the comparison between

exact and FE solution is again shown in terms of the error in Figure

12-3. Close agreement is found and we conclude that to accurately

describe a full wave, approximately 20 points/wavelength are necessary

for linear triangles. For higher order elements, such as quadratic

triangles, fewer points are needed which is the main advantage of such

elements. Table 12-3: PARAMETER VALUES FOR TWO LAYER
CHANNEL. PINE GRID.

The fact that forced interfacial waves are shorter than

surface waves often necessitates the use of a finer grid for strati-

fied flaw than for homogeneous flaw and failure to recognize this

can produce spurious results.
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+ 0.20

+ 0.10

q, [m3

v 0.20

v 0.10

Q 10

InterIaee error

0.01

-0.0>

Error  x5! ~ 20 Interval grid, 2 I

Figure 12-3. Standing wave in two layer channel. Comparison
between analytic~1 and FE solution for 20 inter-
val grid at t=2T, where T = 1OGO sec.
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.'.'.2 Com arisen with Ex erimeu~ta1 Stud .

The problem of wave propagation in a two layered channel was

approached experimentally and theoreticaljy by Hyden [30, 31]. His

analytical model assumed one-dimensior.a3 flow and employed the method

or. characteristics for numerical solution. Me take his experimental

results for run 1 as s basis for comparisot with our FE model.

Figures l2-4 and 12-5 show the experimer.tal set-up,and dimensions and

initial conditions are listed in Table 12-4 . Equation �2.2.1! is

Table 12-4: INITIAL DATA FOR HYDEN'S RUN NO. 1

an expression for the discharge from the top into the bottom layer.

�2. 2. 1! q 0.01471 2m i2mOa6 ~ � cos  � ~ t + t [m /maec]~r lag

The top layer thickness was measured at both ends of the channel and

the maximum velocity in the bottom layer was also observed.
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A FE grid similar to the one shown in Figure 12-1 was

employed. Grid dimensions and other parameters are listed in Table

12-5. The problem was solved using the split time integration scheme

with a At of 0.4 sec. Although this At is somewhat larger than

At , no instabilities were experienced, indicating the same advantagecr'

over explicit schemes as found for the one layer case. Figure 12-6

shows the measured and computed top layer thicknesses vs. time at the

closed end of the channel.

Table 12. 5 PARQKTKRS FOR FE SOLUTION

Both bottom and interfacial friction were neglected in the computations

and the computed results therefore peak slightly before the actual

measured peak. The amplitudes are also somewhat greater than the

measured values. It is reasonable to expect that by including some

friction, the measurements could be fitted closer as shown by Hyden

[30]. The measured maximum velocity in the bottom layer was u
lmax

0.021 m/sec, whereas the FE model gave 0.015 m/sec after 1420 sec.

If the computations were carried through to a harmonic steady state,
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which was not reached after 1500 sec, much better agreement would be

f ound.

12.3 Rectan ular Model � Massachusetts Ba

The two layer model was applied to the rectangular approxima-

tion of Massachusetts Bay which was also considered in Chapter 8. The

rectangular simplification allows us to compare the results qualita-

tively with an analytical solution by Briggs and Madsen [12]. Since

the PK model requires both layers to exist over the entire domain, it

would not be reasonable to model the Bay geometry correctly,but at the

same time make gross assumptions about the bathymetry. Also, we avoid

problems concerning the specification of boundary and initial con-

ditions by restricting the analysis to the simplified case.

Pigure 12-7 shows the FE grid, which has a considerably smaller

mesh size than the one used for the one layer case in anticipation of

shorter interfacial waves. The split time scheme was applied for

the integration and the parameters are shown in Table 12-6. Since prac-

tically no information is available about the movement of the lower

layer, it was decided to fix the interface elevation at its initial

position along the ocean boundary. The surface was then forced as

before according to

�2. 3. 1!
2 20 2b

Wind, coriolis and friction are neglected and the computations were

carried out until a harmonic steady state was reached after approxi-
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mately 200000 sec.

Table 12-6: PARAMETERS FOR TWO LAYER
APPROXIMATION OF MASS ~ BAY

Figures 12-8 to 12-10 show the interface displacements at

different times. The symmetry in interface position between Figures

12-9 and 12-10 indicates that the standing wave has been obtained.

Figure 12-11 shows the surface displacement which is quite smooth in

x, y, as expected. Snapshot pictures of the currents in the two

layers are shown in the figures 12-12 to 12-20. The effect of strati-

fication is quite evident in the current fields which often display a

counterflow behavior and demonstrate the importance of two or multi-
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layer models. Although the boundary conditions in our example are

different from those used by Briggs and Nadsen in their analytical so-

lution, there are several resemblances both in current fields and the

wave lengths of the internal waves.

The descriptive capability of the twa layer madel for stratified

flow is obviously much improved aver one layer models. Our experience

with the model is still limited and more applications are necessary to

determine the model's sensitivity to the various parameters. Jn appli-

cations, the specification of boundary and initial conditions and

field verification are certainly the major problems.

The computational effort expended for a two layer solution is

approximately twice that of the one layer model.
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CHAPTER 1 3

CONC J.J.iS rON

Nui h experience has been gained through applications of the one

layer model. lt is a powerful and efficient computer based tool for

predicting circulation when appl ied to situations for which it is in-

tended. These are predominantly long wave propagation and streamflow

simulations in vertically homogeneous shallow   200m! water bodies.

Long period wind driven circulation is also handled well by the model.

However, due to the relatively slow growth of a boundary layer from

the surface, only total mass transport is predicted for short period

wind events. As a first approximation the model can also be used to

predict the far field circulation of an intake outfall system, such ns

employed for cooling by large electric generating pJants.

A well defined simulation problem necessarily requires speci fied

boundary conditions. ln terms of the natural dependent variables, total

depth and specific discharges per unit width, the correct boundary con-

ditions consist of either prescribed normal and tangential force measures

or normal and tangential discharges. Existing fie]d monitoring programs

presently do not satisfy these minimal requirements, partly because of

inadequate technology. However, to improve modeling accuracy, it is

important that consistent measurements in the field are obtained.

The finite element spatial discretization is found Co be superior

to other approaches for general purpose mod< 1 systems. The flexibility

of the grid J.ayout is an enormous advantage. Nore accurate models

 i.e. with higher order truncation errors! are easily constructed.

Several applications have shown that reasonab le soiutions are found
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even with quite coarse grids.

For temporal discretization we employ finite difference schemes.

Since there are no topographical problems in the time domain it is

easier to construct an efficient finite difference scheme. Stability

analysis of PE generated systems of differential equations is still in

an embryonic stage. The difficulty in establishing stability criteria,

and not having the possibility of "playing" with combinations of space

and time discretizations, are presently the main objections to the FEM.

For the one layer model we proved stability in a linear initial value

problem sense. However, we have been able to exceed the critical time

step for explicit FDN, only by approximately 50X. More research is

needed in this area.

Analysis and many verification studies have established the accur-

acy of computed solutions to the formulated problem.

To improve predictions in transient wind and stratified situations

a two layer idealized model has been developed. Although multi layer

models can be and have been constructed to better describe the flow

patterns, it is felt that in most cases the uncertainty and inaccuracy

of measurements in the field cannot justify the use of more than two

layers.

An attempt to determine the interfacial mass and momentum transfers

from published studies is not conclusive. The strategy in using the two

layer model is therefore to try to bracket a solution by performing

sensitivity studies on the vari,ous parameters. Open ocean boundary

conditions present a major problem inherent in all types of models.

This necessitates extensive field monitoring programs, a point which
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perhaps cannot be over emphasized.

Future model development work could try to approach the problems

of having a moving land boundary far the lower layer and in flooding

situations also of the top layer. Mith implementation of a mass balance

equation to predict the changes in density, one also has to address the

problem of instability in the density structure. Lastly, the ultimate

objective of circulation studies should not be forgotten, namely pre-

diction of transport and spreading of dissolved or suspended matter.
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APPENDIX A

DERIVATION OF FINITE KLQKNT ANAl,Oi'I E FUR THE

EQUATIONS OF NOTION

 A.l! I q pq dA = gq y  , dA Q = Ac, Y QT T T

A Ai

De f ining

qiq<
ci ~ ~ i] xy

H

the convective terms are written

A  Gq! gq dA=Aq g g dAc
T T

i

 A. 4!

r T T Tfa gq dA -fAa � ydAQ -hq f MQ
X y x, y

i i

 A. 5!

X 8J.etting ~ yT
Po X
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Following the same approach as in Chapter 5, the equation for

an arbitrary element is first developed. Thereafter, the system equa-

tions are easily obtained by summing the contributions from all the ele-

ments ~ Where nothing else is mentioned, a variable is assumed expan-

ded according to �.13! ~

Starting with Equation �.29!, we find term by term



 A.6! � z 5q dA ~ h,q $ gdA T hq M T
1 s T T s T s
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The boundary integrals have also been ignored since we are

considering the interior. For slowly varying depth, i.e. gn ' h

g h ~ , the third term in the integrand may also be dropped. The3

3x

expression  A.20! is then written
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The last integral over S always vanishes. If we, for the

moment neglect all external loads and ignore the non-linear terms, we

are left with
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Finally, assembling the system equations by summing over all




